A Novel Virtual Nasal Polyp Removal System Based on Computed Simulation

Authors

  • Marcelo de Castro Silva Freitas Instituto Federal de Educação, Ciência e Tecnologia do Ceará image/svg+xml
  • Fábio de Oliveira Sousa Instituto Federal de Educação image/svg+xml
  • Josias Guimarães Batista Instituto Federal de Educação image/svg+xml
  • Auzuir Ripardo de Alexandria Instituto Federal de Educação, Ciência e Tecnologia do Ceará image/svg+xml
  • Edson Cavalcanti Neto Cento Universitário 7 de setembro (UNI7)
  • Tarique da Silveira Cavalcante Instituto Federal de Educação, Ciência e Tecnologia do Ceará image/svg+xml
  • Victor José Timbó Gondim Unichristus image/svg+xml
  • Ingrid Correia Nogueira Unichristus image/svg+xml
  • Emanuela Sales Unichristus image/svg+xml
  • Glauco Azevedo Unichristus image/svg+xml
  • Marcello Carvalho Reis Instituto Federal de Educação, Ciência e Tecnologia do Ceará image/svg+xml
  • Victor Hugo Costa Albuquerque Universidade Federal do Ceará image/svg+xml

DOI:

https://doi.org/10.21439/jme.v7i1.117

Keywords:

Virtual reality, Computer graphics, Surgery simulation, Biomedical engineering, 3D modeling

Abstract

This paper proposes a simulation platform to train and study the specific nasal polyp removal procedure using a human anatomy atlas in the three-dimensional (3D) model, the Unity3D real-time development platform, this paper also compares articles in the field of simulation applied to medical studies.
The standard procedure to remove paranasal polyps is Functional Endoscopic Surgery of the paranasal sinuses. A rigid optical fiber that guides the removal of polyps through instruments to restore adequate sinus drainage. Currently, many simulators are designed to simulate the performance of medical procedures such as these. The main purpopse is to provide a new solution for training, planning and testing Medical procedures. Using the aforementioned platform, we built a polyp model using the virtual physics system called Metaball, together with Atlas3d we explored the anatomy of the six paranasal organs and we simulate their removal. The simulator applies the concepts of gamification, using the mouse and keyboard control system with a graphical interface for changing tools and timer. The tools were developed to simulate cutting and suction, functions common during the actual procedure. After field testing using the TAM and SUS, we obtained a satisfactory result of 80\%, grade B. Finally, the results obtained through the techniques performed, presenting the functionality and usability of the software, and also a comparison of the systems developed in this study with the current works that follow the same theme.
This preliminary study demonstrates the potential that culminated in the creation of an environment for the removal of paranasal polyps, partially validated by teachers and students, who had active and constant participation throughout the process, whether in the development of tools, of clinical cases, or in the training carried out.

Downloads

Download data is not yet available.

References

ANDRADE, L. P. Avaliação da usabilidade de um sistema de informação em saúde neonatal, através da percepção do usuário, utilizando a ferramenta system usability scale. Universidade Federal de São Paulo (UNIFESP), 2017.

BARBER, S. R.; JAIN, S.; SON, Y.-J.; CHANG, E. H. Virtual functional endoscopic sinus surgery simulation with 3D-printed models for mixed-reality nasal endoscopy. Otolaryngology–Head and Neck Surgery, SAGE Publications Sage CA: Los Angeles, CA, v. 159, n. 5, p. 933–937, 2018.

BARENGHI, L.; BARENGHI, A.; CADEO, C.; BLASIO, A. D. Innovation by computer-aided design/computer-aided manufacturing technology: a look at infection prevention in dental settings. BioMed Research International, Hindawi, v. 2019, 2019.

BEZ, M. R. Construção de um modelo para o uso de simuladores na implementação de métodos ativos de aprendizagem nas escolas de medicina. 2013.

BILJECKI, F.; OHORI, K. A. Automatic semantic-preserving conversion between OBJ and CityGML. In: EUROGRAPHICS. UDMV15: Eurographics Workshop on Urban Data Modelling and Visualisation, Delft, The Netherlands, 23 November 2015; Authors version. Amsterdan, 2015.

BLAIN, J. M. The complete guide to Blender graphics: computer modeling & animation. New York: AK Peters/CRC Press, 2019.

CHANGIZ, T.; YAMANI, N.; TOFIGHI, S.; ZOUBIN, F.; EGHBALI, B. Curriculum management/monitoring in undergraduate medical education: a systematized review. BMC Medical Education, BioMed Central, v. 19, n. 1, p. 1–9, 2019.

DANEVIČIUS, E.; MASKELIUNAS, R.; DAMAŠEVIČIUS, R.; POŁAP, D.; WOŹNIAK, M. A soft body physics simulator with computational offloading to the cloud. Information (Switzerland), v. 9, n. 12, 2018.

DURRANT, J. D. Blendmol: advanced macromolecular visualization in Blender. Bioinformatics, Oxford University Press, v. 35, n. 13, p. 2323–2325, 2019.

FARIA, A. L. OSCE-3D: um sistema de simulação tridimensional para uso em avaliações tipo exame clínico objetivo estruturado. 2019.

FAZIOLI, F.; FICUCIELLO, F.; FONTANELLI, G. A.; SICILIANO, B.; VILLANI, L. Implementation of a soft-rigid collision detection algorithm in an open-source engine for surgical realistic simulation. In: IEEE. 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO). Venue, 2016. p. 2204–2208.

GABAJOVÁ, G.; KRAJČOVIČ, M.; MATYS, M.; FURMANNOVÁ, B.; BURGANOVÁ, N. Designing virtual workplace using Unity 3D game engine. Acta Tecnol, v. 7, p. 35–39, 2021.

GLIED, S. Health care costs: on the rise again. Journal of Economic Perspectives, v. 17, n. 2, p. 125–148, June 2003. Disponível em: <http://www.aeaweb.org/articles?id=10.1257/089533003765888476>.

HAO, J.; XIE, X.; BIAN, G.-B.; HOU, Z.-G.; ZHOU, X.-H. Development of a multi-modal interactive system for endoscopic endonasal approach surgery simulation. In: IEEE. 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO). [S.l.], 2016. p. 143–148.

KNUDSEN, T.; LEVINTHAL, D. A.; PURANAM, P. A model is a model. [S.l.]: INFORMS, 2019. p. 1–3.

LAKSONO, D.; ADITYA, T. Utilizing a game engine for interactive 3D topographic data visualization. ISPRS International Journal of Geo-Information, Multidisciplinary Digital Publishing Institute, v. 8, n. 8, p. 361, 2019.

LIMA, C. J. M. d.; COELHO, R. A.; MEDEIROS, M. S.; KUBRUSLY MARCOS, E.; PEIXOTO, A. A. Desenvolvimento e validação de um aplicativo móvel para o ensino de eletrocardiograma. Revista Brasileira de Educação Médica, SciELO Brasil, v. 43, p. 157–165, 2020.

LIU, A.; TENDICK, F.; CLEARY, K.; KAUFMANN, C. A survey of surgical simulation: applications, technology, and education. Presence: Teleoperators & Virtual Environments, MIT Press, v. 12, n. 6, p. 599–614, 2003.

LÓPEZ, J. G.; SPIRKO, L. V. Simulation, a teaching aid for medical education. Revista Salud Uninorte, Fundación Universidad del Norte, v. 23, n. 1, p. 79–95, 2007.

MENA, A.; BEL, D.; ALFARO, I.; GONZÁLEZ, D.; CUETO, E.; CHINESTA, F. Towards a pancreatic surgery simulator based on model order reduction. Advanced Modeling and Simulation in Engineering Sciences, Springer, v. 2, n. 1, p. 31, 2015.

NISHITA, T.; DOBASHI, Y.; NAKAMAE, E. Display of clouds taking into account multiple anisotropic scattering and sky light. In: Proceedings of the 23rd annual conference on Computer Graphics and Interactive Techniques. New York: [s.n.], 1996. p. 379–386.

NOGUEIRA JÚNIOR, J. F.; CRUZ, D. N. Real models and virtual simulators in otolaryngology: review of literature. Brazilian Journal of Otorhinolaryngology, Elsevier, v. 76, n. 1, p. 129–135, 2010.

OSTROVKA, D.; TESLYUK, V. The analysis of file format conversion tools for storing 3D objects for the iOS platform. In: MoMLeT+ DS. Lviv: [s.n.], 2020. p. 341–350.

PENG, Y.; LI, Q.; YAN, Y.; WANG, Q. Real-time deformation and cutting simulation of cornea using point-based method. Multimedia Tools and Applications, Springer, v. 78, n. 2, p. 2251–2268, 2019.

POSSEMIERS, A. L.; LEE, I. Fast OBJ file importing and parsing in CUDA. Computational Visual Media, Springer, v. 1, n. 3, p. 229–238, 2015.

SHATTUCK, D. W.; MIRZA, M.; ADISETIYO, V.; HOJATKASHANI, C.; SALAMON, G.; NARR, K. L.; POLDRACK, R. A.; BILDER, R. M.; TOGA, A. W. Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage, Elsevier, v. 39, n. 3, p. 1064–1080, 2008.

SO, H. Y.; CHEN, P. P.; WONG, G. K. C.; CHAN, T. T. N. Simulation in medical education. Journal of the Royal College of Physicians of Edinburgh, v. 49, n. 1, p. 52–57, 2019.

STEEN, A. Real-time river simulation using metaballs. 2020.

TAKAYAMA, J. Medallions. International Journal of Asia Digital Art and Design Association, Asia Digital Art and Design Association, v. 20, n. 4, p. 97–102, 2017.

WATSON, K.; WRIGHT, A.; MORRIS, N.; MCMEEKEN, J.; RIVETT, D.; BLACKSTOCK, F.; JONES, A.; HAINES, T.; O’CONNOR, V.; WATSON, G. et al. Can simulation replace part of clinical time? Two parallel randomised controlled trials. Medical Education, Wiley Online Library, v. 46, n. 7, p. 657–667, 2012.

WURM, G.; LEHNER, M.; TOMANCOK, B.; KLEISER, R.; NUSSBAUMER, K. Cerebrovascular biomodeling for aneurysm surgery: simulation-based training by means of rapid prototyping technologies. Surgical Innovation, SAGE Publications Sage CA: Los Angeles, CA, v. 18, n. 3, p. 294–306, 2011.

ZAMRI, M. N.; SUNAR, M. S.; KASIM, S. Atmospheric cloud representation methods in computer graphics: a review. International Journal, v. 9, n. 1.4, 2020.

Downloads

Published

2024-12-07

How to Cite

Silva Freitas, M. de C., Oliveira Sousa, F., Guimarães Batista, J., Ripardo de Alexandria, A., Cavalcanti Neto, E., Silveira Cavalcante, T., Timbó Gondim, V. J., Correia Nogueira, I., Sales, E., Azevedo, G., Carvalho Reis, M., & Costa Albuquerque, V. H. (2024). A Novel Virtual Nasal Polyp Removal System Based on Computed Simulation. Journal of Mechatronics Engineering, 7(1), 25–39. https://doi.org/10.21439/jme.v7i1.117