Recent Advances in Swarm Mobile Robotics
DOI:
https://doi.org/10.21439/jme.v7i1.114Keywords:
Multi-robot System, Swarm Intelligence, Swarm Robotics, Swarm Robots, Recent Advances, RoboticsAbstract
This paper is a critical analysis of the recent advances in the field of swarm mobile robotics. The aim of this article is to analyze the latest developments and technologies being applied in this field. The Science Direct and IEEEXplore data bases were searched for relevant articles published from 2014 to 2020. The selected articles which refer to swarm robotics were individually analyzed to identify their objectives, methodology and results. Although this analysis demonstrates the main areas of advancement, there are some aspects which make the replication and comparison of the proposed techniques difficult, such as the non-standardization of simulation tools and the non-existence of public data bases for certain kinds of application. However, the studies show potential for applications in real environments and based on this analysis, several techniques and tools, used in recent studies concerning swarm robotics are highlighted here.
Downloads
References
ALBANI, D. et al. Monitoring and mapping with robot swarms for agricultural applications. In: IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE, 14., 2017, [s.l.]. Proceedings [...]. [S.l.: s.n.], 2017. p. 1–6.
AURELI, M.; FIORILLI, F.; PORFIRI, M. Portraits of self-organization in fish schools interacting with robots. Physica D: Nonlinear Phenomena, v. 241, n. 9, p. 908–920, 2012. ISSN 0167-2789.
AZNAR, F.; PUJOL, M.; RIZO, R. A swarm behaviour for jellyfish bloom detection. Ocean Engineering, v. 134, p. 24–34, 2017.
BAKHSHIPOUR, M.; GHADI, M. J.; NAMDARI, F. Swarm robotics search & rescue: A novel artificial intelligence-inspired optimization approach. Applied Soft Computing, v. 57, p. 708–726, 2017.
BANDYOPADHYAY, S.; CHUNG, S. J.; HADAEGH, F. Y. Probabilistic and distributed control of a large-scale swarm of autonomous agents. IEEE Transactions on Robotics, v. 33, n. 5, p. 1103–1123, 2017. ISSN 1552-3098.
BAYINDIR, L. A review of swarm robotics tasks. Neurocomputing, v. 172, p. 292–321, 2016. ISSN 1872-8286.
BEN-ARI, M.; MONDADA, F. Swarm Robotics. In: ELEMENTS OF ROBOTICS. 1. ed. [S.l.: s.n.], 2018. cap. 15.
BEN-JACOB, E. et al. Multispecies swarms of social microorganisms as moving ecosystems. Trends in Microbiology, v. xx, n. 4, p. 1–13, 2016. ISSN 0966-842X.
BLANCHARD, A. E.; LU, T. Bacterial social interactions drive the emergence of differential spatial colony structures. BMC Systems Biology, v. 9, n. 1, p. 1–13, 2015. ISSN 1752-0509.
BRUTSCHY, A. et al. Self-organized task allocation to sequentially interdependent tasks in swarm robotics. Autonomous Agents and Multi-Agent Systems, v. 28, n. 1, p. 101–125, 2014. ISSN 1573-7454.
CACCAVALE, A.; SCHWAGER, M. A distributed algorithm for mapping the graphical structure of complex environments with a swarm of robots. In: IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, 2017, [s.l.]. Proceedings [...]. [S.l.: s.n.], 2017.
CAI, Y.; CHEN, Z.; MIN, H. Improving Particle Swarm Optimization Algorithm for Distributed Sensing and Search. In: INTERNATIONAL CONFERENCE ON P2P, PARALLEL, GRID, CLOUD AND INTERNET COMPUTING, 8., 2013, [s.l.]. Proceedings [...]. [S.l.: s.n.], 2013. p. 373–379.
CHAARI, I. et al. Design and performance analysis of global path planning techniques for autonomous mobile robots in grid environments. International Journal of Advanced Robotic Systems, v. 14, n. 2, p. 15, 2017.
CHAARI, I. et al. Smartpath: An efficient hybrid ACO-GA algorithm for solving the global path planning problem of mobile robots. International Journal of Advanced Robotic Systems, v. 11, n. 7, p. 94, 2014.
CHAMANBAZ, M. et al. Swarm-enabling technology for multi-robot systems. Frontiers in Robotics and AI, v. 4, p. 12, 2017.
CHEN, J. et al. Occlusion-based cooperative transport with a swarm of miniature mobile robots. IEEE Transactions on Robotics, v. 31, n. 2, p. 307–321, 2015. ISSN 1552-3098.
CRUZ, N. B.; NEDJAH, N.; MOURELLE, L. d. M. Robust distributed spatial clustering for swarm robotic-based systems. Applied Soft Computing, v. 57, p. 727–737, 2016.
CUEVAS, E. et al. A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Systems with Applications, v. 40, n. 16, p. 6374–6384, 2013. ISSN 0957-4174.
DIRAFZOON, A. et al. Mapping of unknown environments using minimal sensing from a stochastic swarm. In: IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2014, [s.l.]. Proceedings [...]. [S.l.: s.n.], 2014. p. 3842–3849. ISSN 2153-0858.
DORIGO, M. et al. (Ed.). Ant Colony Optimization and Swarm Intelligence. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. v. 5217. (Lecture Notes in Computer Science, v. 5217). ISSN 0302-9743. ISBN 978-3-540-87526-0.
DOURADO, C. M. et al. A new approach for mobile robot localization based on an online IoT system. Future Generation Computer Systems, v. 100, p. 859–881, 2019. ISSN 0167-739X. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0167739X18317400>.
FIELDING, B.; LAWRENCE, T.; ZHANG, L. Evolving and ensembling deep CNN architectures for image classification. In: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, 2019, [s.l.]. Proceedings [...]. [S.l.: s.n.], 2019. p. 1–8. ISSN 2161-4393.
GAO, Y. An improved hybrid group intelligent algorithm based on artificial bee colony and particle swarm optimization. In: INTERNATIONAL CONFERENCE ON VIRTUAL REALITY AND INTELLIGENT SYSTEMS, 2018, [s.l.]. Proceedings [...]. [S.l.: s.n.], 2018. p. 160–163.
GAZI, P. et al. A mechatronic system design case study: Control of a robotic swarm using networked control algorithms. In: IEEE INTERNATIONAL SYSTEMS CONFERENCE, 2010, [s.l.]. Proceedings [...]. [S.l.: s.n.], 2010. p. 169–173.
GRIBOVSKIY, A. et al. Designing a socially integrated mobile robot for ethological research. Robotics and Autonomous Systems, v. 103, p. 42–55, 2018. ISSN 0921-8890.
GUZZI, J. et al. Bioinspired obstacle avoidance algorithms for robot swarms. In: CARO, G. A. D.; THERAULAZ, G. (Ed.). Bio-Inspired Models of Network, Information, and Computing Systems. Cham: Springer International Publishing, 2014. p. 120–134. ISBN 978-3-319-06944-9.
HAN, T. et al. An effective approach to unmanned aerial vehicle navigation using visual topological map in outdoor and indoor environments. Computer Communications, v. 150, p. 696–702, 2020. ISSN 0140-3664. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0140366419307868>.
HE, L. et al. Feedback formation control of UAV swarm with multiple implicit leaders. Aerospace Science and Technology, v. 72, p. 327–334, 2018. ISSN 1270-9638.
HIGGINS, F.; TOMLINSON, A.; MARTIN, K. M. Survey on security challenges for swarm robotics. In: INTERNATIONAL CONFERENCE ON AUTONOMIC AND AUTONOMOUS SYSTEMS, 5., 2009, [s.l.]. Proceedings [...]. [S.l.: s.n.], 2009. p. 307–312.
HIGUERA, J. C. G.; DUDEK, G. Fair subdivision of multi-robot tasks. In: IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, 2013, [s.l.]. Proceedings [...]. [S.l.: s.n.], 2013. p. 3014–3019.
HOCRAFFER, A.; NAM, C. S. A meta-analysis of human-system interfaces in unmanned aerial vehicle (UAV) swarm management. Applied Ergonomics, 2017.
HOFF, N. R. et al. Two foraging algorithms for robot swarms using only local communication. In: IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS, 2010, [s.l.]. Proceedings [...]. [S.l.: s.n.], 2010. p. 123–130.
HOSSAIN, M. A.; FERDOUS, I. Autonomous robot path planning in dynamic environment using a new optimization technique inspired by bacterial foraging technique. Robotics and Autonomous Systems, v. 64, p. 137–141, 2015. ISSN 0921-8890.
HOWDEN, D. J. Fire tracking with collective intelligence using dynamic priority maps. In: IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, [s.l.]. Proceedings [...]. [S.l.: s.n.], 2013. p. 2610–2617.
HUSNI, N. L. et al. Cooperative searching strategy for swarm robot. In: INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND COMPUTER SCIENCE (ICECOS), 2017, [s.l.]. Proceedings [...]. [S.l.: s.n.], 2017.
HUSSAIN, T. et al. Intelligent embedded vision for summarization of multiview videos in IIoT. IEEE Transactions on Industrial Informatics, v. 16, n. 4, p. 2592–2602, 2020. ISSN 1941-0050.
INACIO, F. R.; MACHARET, D. G.; CHAIMOWICZ, L. PSO-based strategy for the segregation of heterogeneous robotic swarms. Journal of Computational Science, v. 31, p. 86–94, 2019. ISSN 1877-7503. Disponível em: <http://www.sciencedirect.com/science/article/pii/S1877750318308500>.
JAHANBIN, Z. et al. Multi-body simulation of a flapping-wing robot using an efficient dynamical model. Journal of the Brazilian Society of Mechanical Sciences and Engineering, v. 38, n. 1, p. 133–149, 2016. ISSN 1806-3691.
JEONG, D.; LEE, K. Distributed communication and localization algorithms for homogeneous robotic swarm. In: DISTRIBUTED AUTONOMOUS ROBOTIC SYSTEMS, 2016. [S.l.: s.n.].
JOSE, K.; PRATIHAR, D. K. Task allocation and collision-free path planning of centralized multi-robots system for industrial plant inspection using heuristic methods. Robotics and Autonomous Systems, v. 80, p. 34–42, 2016. ISSN 0921-8890.
KHALDI, B. et al. Monitoring a robot swarm using a data-driven fault detection approach. Robotics and Autonomous Systems, 2017.
KHALDI, B. et al. Self-organization in aggregating robot swarms: A DW-KNN topological approach. Biosystems, v. 165, p. 106–121, 2018. ISSN 0303-2647. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0303264717302897>.
KHAN, S. et al. Energy-efficient deep CNN for smoke detection in foggy IoT environment. IEEE Internet of Things Journal, v. 6, n. 6, p. 9237–9245, 2019. ISSN 2372-2541.
KHANNA, A. et al. A mutual exclusion algorithm for flying ad hoc networks. Computers & Electrical Engineering, v. 76, p. 82–93, 2019. ISSN 0045-7906. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0045790618320834>.
KITAMURA, N.; NAKAMICHI, Y.; FUKUDA, K. Development of a desktop swarm robot system based on pheromone communication. Artificial Life and Robotics, v. 14, n. 3, p. 329, 2009. ISSN 1614-7456.
KLINGNER, J.; AHMED, N.; CORRELL, N. Fault-tolerant covariance intersection for localizing robot swarms. Robotics and Autonomous Systems, v. 122, p. 103306, 2019. ISSN 0921-8890. Disponível em: <http://www.sciencedirect.com/science/article/pii/S092188901930243X>.
KRAUSE, D.; HUSSEIN, M.; BECKER, T. Online monitoring of bioprocesses via multivariate sensor prediction within swarm intelligence decision making. Chemometrics and Intelligent Laboratory Systems, v. 145, p. 48–59, 2015. ISSN 0169-7439. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0169743915000945>.
KUMAR, G.; KUMAR, S. Evolutionary optimization of fuzzy map formation using sonar data from robot swarms. In: IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, 2012, [s.l.]. Proceedings [...]. [S.l.: s.n.], 2012. p. 1–8.
KUO, V.; FITCH, R. Scalable multi-radio communication in modular robots. Robotics and Autonomous Systems, v. 62, n. 7, p. 1034–1046, 2014. ISSN 0921-8890.
LANCASTER, J. P.; GUSTAFSON, D. A. Predicting the behavior of robotic swarms in search and tag tasks. Procedia Computer Science, v. 20, p. 77–82, 2013. ISSN 1877-0509.
LIANG, H.; KANG, F. A novel task optimal allocation approach based on Contract Net Protocol for agent-oriented UUV swarm system modeling. Optik, v. 127, p. 3928–3933, 2016.
LIMA, D. A.; OLIVEIRA, G. M. B. A cellular automata ant memory model of foraging in a swarm of robots. Applied Mathematical Modelling, 2017.
LIU, D.; SHI, G.; LI, W. Decision support based on optimal collision avoidance path and collision risk. In: IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING (ICITE), 2018, [s.l.]. Proceedings [...]. [S.l.: s.n.], 2018. p. 164–169.
LIU, T.-M.; LYONS, D. M. Leveraging area bounds information for autonomous decentralized multi-robot exploration. Robotics and Autonomous Systems, v. 74, p. 66–78, 2015. ISSN 0921-8890.
LIU, Y.; PASSINO, K. M. Swarm Intelligence: Literature Overview. Measurement and Control, n. 614, p. 9, 2000.
LIU, Z. et al. Team assembling problem for asynchronous heterogeneous mobile robots. Theoretical Computer Science, v. 721, p. 27–41, 2018. ISSN 0304-3975.
MAITRA, A.; PRASATH, S. R.; PADHI, R. A brief survey on bio-inspired algorithms for autonomous landing. IFAC-PapersOnLine, v. 49, n. 1, p. 407–412, 2016. ISSN 2405-8963.
MARCOLINO, L. S. et al. Avoiding target congestion on the navigation of robotic swarms. Autonomous Robots, 2017.
MARINHO, L. B. et al. A novel mobile robot localization approach based on topological maps using classification with reject option in omnidirectional images. Expert Systems with Applications, v. 72, p. 1–17, 2017. ISSN 0957-4174.
MARINHO, L. B. et al. A novel mobile robot localization approach based on classification with rejection option using computer vision. Computers & Electrical Engineering, v. 68, p. 26–43, 2018. ISSN 0045-7906.
MA’SUM, M. A. et al. Autonomous quadcopter swarm robots for object localization and tracking. In: MHS 2013, 2013, [s.l.]. Proceedings [...]. [S.l.: s.n.], 2013. p. 1–6.
MATHIAS, R. et al. Efficient distributed algorithm of dynamic task assignment for swarm robotics. Neurocomputing, v. 172, p. 345–355, 2016. ISSN 0925-2312.
MEHMOOD, I. et al. Efficient image recognition and retrieval on IoT-assisted energy-constrained platforms from big data repositories. IEEE Internet of Things Journal, v. 6, n. 6, p. 9246–9255, 2019. ISSN 2372-2541.
MELO, M. et al. Development of a robotic airboat for online water quality monitoring in lakes. Robotics, v. 8, p. 19, 2019.
MENDONÇA, R. M. de; NEDJAH, N.; MOURELLE, L. de M. Efficient distributed algorithm of dynamic task assignment for swarm robotics. Neurocomputing, v. 172, p. 345–355, 2016. ISSN 0925-2312.
MILLER, O. G.; GANDHI, V. A survey of modern exogenous fault detection and diagnosis methods for swarm robotics. Journal of King Saud University - Engineering Sciences, 2019. ISSN 1018-3639. Disponível em: <http://www.sciencedirect.com/science/article/pii/S1018363919302995>.
MOITRA, S. et al. Design and analysis of a bio-inspired flapping wing robot. In: ADVANCES IN ROBOTICS, 2017, New York, NY, USA. Proceedings [...]. New York, NY: ACM, 2017. p. 28:1–28:7. ISBN 978-1-4503-5294-9.
MONTIEL, O.; OROZCO-ROSAS, U.; SEPÚLVEDA, R. Path planning for mobile robots using bacterial potential field for avoiding static and dynamic obstacles. Expert Systems with Applications, v. 42, n. 12, p. 5177–5191, 2015. ISSN 0957-4174.
MOREIRA, A. et al. The use of a statistical filter and metaheuristics to model and control the DC motor of the mobile robot used on NXP Cup. Journal of Mechatronics Engineering, v. 1, n. 1, p. 11–20, 2018. ISSN 2595-3230.
MUHAMMAD, K. et al. Edge intelligence-assisted smoke detection in foggy surveillance environments. IEEE Transactions on Industrial Informatics, v. 16, n. 2, p. 1067–1075, 2020. ISSN 1941-0050.
NAGAVALLI, S.; CHAKRABORTY, N.; SYCARA, K. Automated sequencing of swarm behaviors for supervisory control of robotic swarms. In: IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2017, [s.l.]. Proceedings [...]. [S.l.: s.n.], 2017. p. 2674–2681.
NEDJAH, N.; MENDONÇA, R. M. de; MOURELLE, L. de M. PSO-based distributed algorithm for dynamic task allocation in a robotic swarm. Neurocomputing, v. 51, p. 326–335, 2015.
NIE, W.; FENG, S. Planar path-following tracking control for an autonomous underwater vehicle in the horizontal plane. Optik, v. 127, p. 11607–11616, 2016.
NIIMI, A. et al. Development of the compact swarm robot system based on pheromone communication: An improvement approach for position measurement system. In: SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE) ANNUAL CONFERENCE, 56., 2017, [s.l.]. Proceedings [...]. [S.l.: s.n.], 2017. p. 1439–1442.
OH, H. et al. Bio-inspired self-organizing multi-robot pattern formation: A review. Robotics and Autonomous Systems, v. 91, p. 83–100, 2017.
OIKAWA, R.; TAKIMOTO, M.; KAMBAYASHI, Y. Distributed formation control for swarm robots using mobile agents. In: IEEE JUBILEE INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI), 10., 2015, [s.l.]. Proceedings [...]. [S.l.: s.n.], 2015. p. 111–116.
OTSUKA, A. et al. Algorithm for swarming and following behaviors of multiple mobile robots. In: IECON - ANNUAL CONFERENCE OF THE IEEE, 41., 2015, [s.l.]. Proceedings [...]. [S.l.: s.n.], 2015.
PERREAULT, L.; WITTIE, M. P.; SHEPPARD, J. Communication-aware distributed PSO for dynamic robotic search. In: IEEE SSCI - SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE, 2014, [s.l.]. Proceedings [...]. [S.l.: s.n.], 2015. p. 65–72.
PRENCIPE, G. CORDA: Distributed coordination of a set of autonomous mobile robots. [S.l.: s.n.], 2001.
RANGO, F. D. et al. Bio-inspired exploring and recruiting tasks in a team of distributed robots over mined regions. In: INTERNATIONAL SYMPOSIUM ON PERFORMANCE EVALUATION OF COMPUTER AND TELECOMMUNICATION SYSTEMS (SPECTS), 2015, [s.l.]. Proceedings [...]. [S.l.: s.n.], 2015.
RANGO, F. D. et al. Swarm robotics in wireless distributed protocol design for coordinating robots involved in cooperative tasks. Soft Computing, 2017. ISSN 1433-7479.
RAVANKAR, A. et al. Avoiding blind leading the blind: Uncertainty integration in virtual pheromone deposition by robots. International Journal of Advanced Robotic Systems, v. 13, n. 6, p. 16, 2016.
ROSALIE, M. et al. Chaos-enhanced mobility models for multilevel swarms of UAVs. Swarm and Evolutionary Computation, 2018. ISSN 2210-6502.
ROY, D.; MAITRA, M.; BHATTACHARYA, S. Study of formation control and obstacle avoidance of swarm robots using evolutionary algorithms. In: IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2016, [s.l.]. Proceedings [...]. [S.l.: s.n.].
SABATTINI, L. et al. Decentralized control of cooperative robotic systems for arbitrary setpoint tracking while avoiding collisions. IFAC-PapersOnLine, v. 48, n. 19, p. 57–62, 2015. ISSN 2405-8963.
SALOMONS, N.; KAPELLMANN-ZAFRA, G.; GROSS, R. Human management of a robotic swarm. In: TAROS 2016, [s.l.]. Lecture Notes in Artificial Intelligence (LNAI), v. 9716. [S.l.]: Springer, 2016. p. 282–287.
SANTOS, M. A. et al. Online heart monitoring systems on the internet of health things environments: A survey, a reference model and an outlook. Information Fusion, v. 53, p. 222–239, 2020. ISSN 1566-2535. Disponível em: <http://www.sciencedirect.com/science/article/pii/S1566253518309035>.
SCARADOZZI, D. et al. BCF swimming locomotion for autonomous underwater robots: A review and a novel solution to improve control and efficiency. Ocean Engineering, v. 130, p. 437–453, 2017. ISSN 0029-8018.
SCHWARZROCK, J. et al. Solving task allocation problem in multi unmanned aerial vehicles systems using swarm intelligence. Engineering Applications of Artificial Intelligence, v. 72, p. 10–20, 2018. ISSN 0952-1976.
SEÇKIN, A. Ç.; KARPUZ, C.; ÖZEK, A. Feature matching based positioning algorithm for swarm robotics. Computers & Electrical Engineering, v. 67, p. 807–818, 2018. ISSN 0045-7906.
SHAHREZA, M. L. et al. Anomaly detection using a self-organizing map and particle swarm optimization. Scientia Iranica, v. 18, n. 6, p. 1460–1468, 2011. ISSN 1026-3098. Disponível em: <http://www.sciencedirect.com/science/article/pii/S1026309811001751>.
SHENOY, M. V.; ANUPAMA, K. Swarm-sync: A distributed global time synchronization framework for swarm robotic systems. Pervasive and Mobile Computing, v. 44, p. 1–30, 2018. ISSN 1574-1192.
SHI, Z. et al. The improved Q-Learning algorithm based on pheromone mechanism for swarm robot system. In: CHINESE CONTROL CONFERENCE (CCC), 2013, [s.l.]. Proceedings [...]. [S.l.: s.n.], 2013. p. 6033–6038.
SILVA JUNIOR, L.; NEDJAH, N. Wave algorithm applied to collective navigation of robotic swarms. Applied Soft Computing, 2017.
SILVA, S. P. P. da et al. Monocular vision-aided depth map from RGB images to estimate localization and support navigation of mobile robots. IEEE Sensors Journal, 2020. ISSN 2379-9153.
SODHRO, A. H. et al. Artificial intelligence-based QoS optimization for multimedia communication in IoV systems. Future Generation Computer Systems, v. 95, p. 667–680, 2019. ISSN 0167-739X. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0167739X18320314>.
SODHRO, A. H.; PIRBHULAL, S.; ALBUQUERQUE, V. H. C. de. Artificial intelligence-driven mechanism for edge computing-based industrial applications. IEEE Transactions on Industrial Informatics, v. 15, n. 7, p. 4235–4243, 2019. ISSN 1941-0050.
SOLEYMANI, T. et al. Bio-inspired construction with mobile robots and compliant pockets. Robotics and Autonomous Systems, v. 74, p. 340–350, 2015. ISSN 0921-8890.
SONG, Y. et al. A novel foraging algorithm for swarm robotics based on virtual pheromones and neural network. Applied Soft Computing, v. 90, p. 106156, 2020. ISSN 1568-4946. Disponível em: <http://www.sciencedirect.com/science/article/pii/S156849462030096X>.
SORINI, C.; FALCONE, M. Review Article. [Revista não identificada], v. 2, n. 2, p. 156–171, 2013. ISSN 1469-7742.
SOUZA, R. W. R. D. et al. A novel approach for optimum-path forest classification using fuzzy logic. IEEE Transactions on Fuzzy Systems, 2019. ISSN 1941-0034.
SPANOGIANOPOULOS, S.; ZHANG, Q.; SPURGEON, S. Fast formation of swarm of UAVs in congested urban environment. IFAC-PapersOnLine, v. 50, n. 1, p. 8031–8036, 2017. ISSN 2405-8963.
STOJANOVIC, V. et al. Application of cuckoo search algorithm to constrained control problem of a parallel robot platform. The International Journal of Advanced Manufacturing Technology, v. 87, n. 9, p. 2497–2507, 2016. ISSN 1433-3015.
SUTANTYO, D.; LEVI, P. Decentralized underwater multi-robot communication using bio-inspired approaches. Artificial Life and Robotics, v. 20, n. 2, p. 152–158, 2015. ISSN 1614-7456.
TAN, Y.; ZHENG, Z.-y. Research advance in swarm robotics. Defence Technology, v. 9, n. 1, p. 18–39, 2013. ISSN 2214-9147.
TIMMIS, J. et al. An immune-inspired swarm aggregation algorithm for self-healing swarm robotic systems. BioSystems, v. 146, p. 60–76, 2016.
TOKAS, P.; DAS, D. A distributed algorithm for assembling of asynchronous swarm of mobile robots with limited visibility in presence of horizontal line obstacle. In: INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2., 2017, [s.l.]. Proceedings [...]. [S.l.: s.n.], 2017. p. 426–429.
TORABI, S. Collective transportation of objects by a swarm of robots. Goteborg: Chalmers Reproservice, 2015. ISSN 1652-8557.
VALENTE, I. R. S. et al. Automatic 3D pulmonary nodule detection in CT images: A survey. Computer Methods and Programs in Biomedicine, v. 124, p. 91–107, 2016. ISSN 0169-2607.
VARUGHESE, J. C. et al. A model for bio-inspired underwater swarm robotic exploration. IFAC-PapersOnLine, v. 51, n. 2, p. 385–390, 2018. ISSN 2405-8963.
VERLEKAR, H.; JOSHI, K. Ant bee inspired foraging swarm robots using computer vision. In: INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER, AND OPTIMIZATION TECHNIQUES (ICEECCOT), 2017, [s.l.]. Proceedings [...]. [S.l.: s.n.], 2017. p. 191–195.
WANG, S. et al. A decentralized swarm intelligence algorithm for global optimization of HVAC system. IEEE Access, v. 7, p. 64744–64757, 2019. ISSN 2169-3536.
WEI, H.-X. et al. A centroidal Voronoi tessellation-based intelligent control algorithm for the self-assembly path planning of swarm robots. Expert Systems with Applications, 2017.
WU, H. et al. Modeling and simulation of dynamic ant colony’s labor division for task allocation of UAV swarm. Physica A: Statistical Mechanics and its Applications, v. 491, p. 127–141, 2018. ISSN 0378-4371.
WU, W. et al. Cooperatively mapping of the underwater acoustic channel by robot swarms. In: INTERNATIONAL CONFERENCE ON UNDERWATER NETWORKS & SYSTEMS (WUWNET), 2014, New York, NY, USA. Proceedings [...]. New York, NY: ACM, 2014. p. 20:1–20:8. ISBN 978-1-4503-3277-4.
XAVIER, R. S.; OMAR, N.; CASTRO, L. N. de. Bacterial colony: Information processing and computational behavior. In: THIRD WORLD CONGRESS ON NATURE AND BIOLOGICALLY INSPIRED COMPUTING, 2011, [s.l.]. Proceedings [...]. [S.l.: s.n.], 2011. p. 439–443.
XU, S. et al. GQM: Autonomous goods quantity monitoring in IIoT based on battery-free RFID. Mechanical Systems and Signal Processing, v. 136, p. 106411, 2020. ISSN 0888-3270. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0888327019306326>.
YAN, X.; LIANG, A.; GUAN, H. An algorithm for self-organized aggregation of swarm robotics using timer. In: IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2011, [s.l.]. Proceedings [...]. [S.l.: s.n.], 2011. p. 81–87.
YANG, B. et al. Self-organized swarm robot for target search and trapping inspired by bacterial chemotaxis. Robotics and Autonomous Systems, v. 72, p. 83–92, 2015. ISSN 0921-8890. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0921889015000937>.
YIE, Y.; SOLIHIN, M. I.; KIT, A. C. Development of swarm robots for disaster mitigation using robotic simulator software. In: INTERNATIONAL CONFERENCE ON ROBOTIC, VISION, SIGNAL PROCESSING AND POWER APPLICATIONS, 9., 2017, [s.l.]. Proceedings [...]. [S.l.: s.n.], 2017.
ZEDADRA, O. et al. A cooperative switching algorithm for multi-agent foraging. Engineering Applications of Artificial Intelligence, v. 50, p. 302–319, 2016. ISSN 0952-1976.
ZHOU, Y.; GOLDMAN, R.; MCLURKIN, J. An asymmetric distributed method for sorting a robot swarm. IEEE Robotics and Automation Letters, v. 2, n. 1, p. 261–268, 2017. ISSN 2377-3766.
ZHOU, Z. et al. Tangent navigated robot path planning strategy using particle swarm optimized artificial potential field. Optik, v. 158, p. 639–651, 2018. ISSN 0030-4026. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0030402617318132>.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Mechatronics Engineering

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors publishing in the Journal of Mechatronics Engineering agree to the following terms: Authors retain copyright and grant the journal the right of first publication, with the work licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY - NC-SA 4.0). Our articles are available free and free, with privileges for educational, fishing and non-commercial activities.