
Versatile IoT system for Cloud-based sensor monitoring

AYRTON A. M. SILVA1 , SANDRO C. S. JUCÁ1 ,
LEONARDO S. COSTA1 , PAULO M. M. SILVA1,

RENATA I. S. PEREIRA2

1Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE), Brazil
2Universidade Federal do Ceará (UFC), Brazil

<ayrton.alexmds@gmail.com>, <sandrojuca@ifce.edu.br>
<leonardo.costa@ppgcc.ifce.edu.br>, <mateus.moura@ppgcc.ifce.edu.br>

<renata@dee.ufc.br>

DOI: 10.21439/jme.v1i1.8

Received: 31 Jan. 2018. Accepted: 8 Mar. 2018

Abstract. In this age of automation, the acquisition and monitoring of sensor data is essential to ensure
the correct condition and functioning of machines and systems without the need of manual verification.
This paper describes the development, assembling and configuration of a system for sensor data acqui-
sition and Cloud-based monitoring. The acquisition system is versatile, allowing the usage from one to
six sensors and the replacement of those with little additions to the code. The monitoring system has
versions for PHP and Java both on Portuguese and English language. The collected data is read and
processed by a microcontroller board and sent to the Internet by a Raspberry Pi. Then, the monitoring
system displays it as charts with several different search modes and options to facilitate and give more
accuracy for sensor monitoring. All the software is free and open-source, allowing adaptations to suit the
user’s needs.

Keywords: Internet of Things, sensors, data acquisition, online monitoring.

1 Introduction

The Internet of Things (IoT) is a theme that becomes
more popular around the world with each passing day.
It’s a concept that not only has the potential to impact
how we live but also how we work Morgan (2014). The
IoT is a deep subject, that in a simplified manner means
to connect devices (or even parts of devices) to the In-
ternet and allow them to communicate with each other.

In recent years a growth in the development of
data acquisition and digital signal processing is visi-
ble (SMAR, 2017), and it is estimated that by 2020 we
will have around fifty billion devices connected to the
Internet (CISCO, 2011). The monitoring of sensors is
essential in many areas, since it enables the automation
of delicate processes that require constant monitoring.
However, the current monitoring systems usually deal
with a small amount of sensors. This project seeks to

overcome this issue.

This paper has the objective of demonstrating the
development of a versatile system for data acquisition,
Cloud persistence and remote monitoring. For that,
a microcontroller SanUSB board (with the microcon-
troller PIC18F2550) and a Raspberry Pi will be used.
The data will be stored in the ThingSpeak platform. The
monitoring will be performed through a PHP system,
responsible for displaying the data available as charts.
Since it is a universal system for AD sensors, the project
may easily be extended for other related lines of re-
search.

The next sections will approach the related works,
the resources used in the development of this system
and its functioning. Afterwards the results, final words,
suggestions and improvements for future works will be
discussed.

Journal of Mechatronics Engineering, v. 1, n. 1, p. 2 - 10, Apr. 2018 2

https://orcid.org/0000-0002-7675-535X
https://orcid.org/0000-0002-8085-7543
https://orcid.org/0000-0003-3704-1482
https://orcid.org/0000-0001-9609-0482
https://orcid.org/0000-0002-3266-2880
ayrton.alexmds@gmail.com
sandrojuca@ifce.edu.br
leonardo.costa@ppgcc.ifce.edu.br
mateus.moura@ppgcc.ifce.edu.br
renata@dee.ufc.br


Versatile IoT system for Cloud-based sensor monitoring

2 Related works

Other works with similar objectives have been found,
involving data acquisition and monitoring of sensors for
both specific and generic purposes.

Andreola et al. (2016) is about sensor data acqui-
sition for the viability study of wind turbines installa-
tion in a specific location. A microcontroller of the PIC
family is used, and it stores the data collected in an SD
card during a year.

Galante & Garcia (2014) is about a system for a re-
placeable sensor’s data acquisition and viewing. It is
based on Arduino, and also stores the data in an SD
card.

Khera et al. (2016) built a system for real-time data
acquisition, monitoring of the data and repositioning of
solar panels based in the sunlight received. The system
is based on Arduino as well, and stores the gathered
data both in a local storage unit and in the ThingSpeak
platform, with the use of a GSM modem.

Mutha, Kumar & Pareek (2016) proposed a system
for the acquisition of data from several sensors related
to the environment (temperature, humidity, and others),
based on Arduino. The data collected has been stored
in the Cloud, in the IoT server Carriots.

The works above present a limitation in the amount
of sensors, with the maximum being four in Mutha, Ku-
mar & Pareek (2016). Another limitation is present in
the storage of the data acquired, since data in the Cloud
is more accessible than data stored locally, and the Car-
riots platform is not entirely free.

This document proposes a more versatile prototype.
It is able to accept more sensors and uses alternative
storage options when offline, thus avoiding the loss of
readings. It is also versatile, allowing its sensors to
be replaced with only small changes in the code. The
monitoring system allows the user to consult the data
stored in a more graphic manner, and provides the user
with several different search modes and functions not
usually available in storage platforms.

Still, it is worth noting that the fact that the related
works use fewer sensors is not a disadvantage. They
use the amount of sensors necessary for their specific
purposes. This project does not focus on the amount
of sensors alone — it actually focuses on versatility. It
seeks to provide a simple, free, open-source, versatile
and reusable system that can be easily adapted to suit
the user’s needs. This system accepts six (or more) sen-
sors and provides the means for customization and even
the adding of more functions, while allowing the user to
monitor the data of those sensors in a graphic and accu-

rate manner.

3 Resources

This section approaches the resources used in the sys-
tem’s development:

• The microcontroller SanUSB board.

• The RaspberryPi (RPi).

• The sensors.

• The SanUSB tool.

• The WiringPi library for RPi usage.

• The curl tool for sending data.

• The FusionCharts library for chart generation in
PHP/JavaScript.

• The ThingSpeak platform, used for data storage.

3.1 SanUSB board, Raspberry Pi and used sensors

The Raspberry Pi is a computer with reduced size and
cost produced by the Raspberry Pi Foundation. Despite
its reduced size, the RPi possesses the resources and
capabilities of a standard computer. In this project, the
RPi’s function shall be receiving the data from the mi-
crocontroller board and sending this data to the Thing-
Speak platform for storage. This will be done by a soft-
ware written in C language, using the libraries WiringPi
and curl. As any other general-purpose computer the
RPi has an operational system installed, in this case the
Raspbian1, a free operational system based in Debian
and optimized for the RPi’s hardware.

Although the RPi is a great learning tool as useful
as a standard computer for most tasks and widely used
in IoT projects, it doesn’t have an analog/digital con-
verter. Such a converter — that is not present in most
regular computers — is necessary to read the data of
sensors that work with analog values. For that reason,
the AD converter of the microcontroller PIC18F2550
will be used when reading the sensors. Afterwards, the
microcontroller will send the converted data to the RPI
through serial communication.

Another advantage of using the RPi is the possibil-
ity of adding extensions to the project. Such extensions
could enable the addition of actuators to alter the envi-
ronment’s state or trigger alarms, for example, without

1https://www.raspbian.org/

Journal of Mechatronics Engineering, v. 1, n. 1, p. 2 - 10, Apr. 2018 3



Versatile IoT system for Cloud-based sensor monitoring

changing the acquisition system itself. That may be
achieved using threads within the code, another feature
enabled by WiringPi.

A microcontroller is a complete computational sys-
tem, in which are internally included a CPU, RAM,
flash and EEPROM memories, I/O pins, besides several
other peripherals Jucá & Pereira (2017). The microcon-
troller PIC18F2550 was chosen for this project because
of its sinergy with the SanUSB tool (explained in 3.2).
Besides, the microcontroller used offers the advantages
of the PIC18 family, such as high computational per-
formance for an economic price and additional high en-
durance, Enhanced Flash program memory (MICRO-
CHIP, 2006).

In this project, two sensors are used: temperature
and luminosity. They will be powered by the RPi, and
each one will be read by one of the analog ports of
the microcontroller board. Up to six sensors (limit ex-
plained in 3.4) may be used simultaneously with only
small additions to the source code.

3.2 SanUSB tool

The transferring of programs to microcontrollers is
usually done with a specific burner hardware Jucá, Car-
valho & Brito (2009). A microcontroller SanUSB board
was used to ease this transference, thus speeding up the
project’s development. The board can me merged to the
RPI efficiently and works with the PIC microcontroller
mentioned above, which is the reason behind this spe-
cific choice. The objective of this board is to make the
microcontroller’s burning process easier, communicat-
ing with the USB port of a computer for burning and
powering. It also provides several other useful func-
tions for microcontroller usage, and a schematic of the
board’s circuit is available in Jucá, Carvalho & Brito
(2009).

After the assembling and initial setup of the micro-
controller board, it is necessary to use the SanUSB tool
to burn the source code into the microcontroller. Be-
fore burning, the code is compiled from C to hexadeci-
mal (.hex), required for running in the microcontroller.
Another useful mechanic of the SanUSB tool is the op-
tion to be used both through user interface and through
command lines, which enables the microcontroller to be
burned directly by the RPi. The efficiency of the com-
bined use of the microcontroller board with the RPi is
demonstrated in several articles, such as Queiroz et al.
(2016).

3.3 Used libraries

WiringPi2 is a GPIO (General-purpose input/output) ac-
cess library written in C for the BCM2835 processor
used in the Raspberry Pi. Although it is written in C —
which is the language used in the development of the
data acquisition software — this library is available in
several other languages. In this project, the WiringPi
library is used for configuring, reading and writing the
GPIO ports.

Despite the fact that the RPi in this project is al-
ready connected to the Internet, the acquisition system
needs a way to send the collected data to the Thing-
Speak platform. To this end, the tool/data transference
library curl3 is used. As a free and open-source soft-
ware, the curl library is used via command lines or code
to transfer data, and it is used in the data transferences
of thousands of applications.

For the generation of charts in the PHP version of
the monitoring system, the library FusionCharts was
used. Based in JavaScript, it also has a plugin for use in
PHP and is capable of generating many types of 2D or
3D charts and even maps based on dynamically defined
data. It was chosen for this project because it is easy
to learn and use, with several chart models that can be
chosen by an user of implementing level.

3.4 ThingSpeak and monitoring system

The storage platform selected for use in this project
is ThingSpeak4. ThingSpeak is an IoT platform that
enables the user to store data collected from sensors in
the Cloud and develop IoT applications. The platform
acts as a system of “channels” that functions like the ta-
bles from a database. Each channel has a maximum of
eight fields for storage, and two are configured for stor-
ing the date and time of readings. The remaining six
fields can be used by the sensors. The data sent by the
RPi is stored in the ThingSpeak platform so that it may
be accessed by the monitoring system by using a shared
key.

Configuring a new channel is simple. After creation
it is necessary to configure the initial settings (Figure 1)
by selecting how many fields should be enabled. Once
the required fields are enabled, all that is left is to get the
read and write API keys as shown on Figure 2. After the
keys are generated, the platform explains how to import
and export data to the channel.

2http://wiringpi.com/
3https://curl.haxx.se/
4https://www.mathworks.com/help/thingspeak/

Journal of Mechatronics Engineering, v. 1, n. 1, p. 2 - 10, Apr. 2018 4



Versatile IoT system for Cloud-based sensor monitoring

Figure 1: Example of ThingSpeak settings

Figure 2: Example of ThingSpeak API keys

But despite its usefulness, the ThingSpeak platform
has certain limitations that make it undesirable for data
monitoring: the charts it generates (and the data asso-
ciated) can only be browsed and by the user to a certain
extent. Furthermore, they do not take into account the
time the readings were taken, only the time when they
were uploaded. That means any readings taken on the
previous day, for instance, would be accounted by its
charts as readings taken today, disregarding the time in-
formed by the user. Still, it does allow the user to re-
trieve all the data in text form (JSON) through the API
mentioned earlier, making it a great storage platform for

a user lacking a server of his own.
The monitoring system developed is then responsi-

ble for converting the JSON provided by ThingSpeak
into the charts viewed by the user. It also provides the
user with the means to search through this data (also not
provided by ThingSpeak), much like a regular database.

This monitoring system has versions in Java and
PHP (with same functions), and is available on Por-
tuguese and English. It needs to be installed in an acces-
sible server so that the charts may always be consulted
when needed. The system has a friendly interface, and
uses a system of user control based in MySQL.

If the user has programming knowledge he may de-
velop his own monitoring system to replace the one pro-
vided, as long as the ThingSpeak API is used correctly
to access the data. In the project the account of one of
the authors was used for testing, but any user may cre-
ate his own account. In the moment of channel creation
two API keys (read and write) are generated, to be used
in requests. Read requests return the data of the chan-
nel in JSON format, easy to understand and use. An
advantage of choosing ThingSpeak over another plat-
form (such as Carriots) is that all their services are free
despite minor limitations. However, the use of Thing-
Speak is not mandatory. It may be replaced by another
platform, or even by a database in a server managed by
the user (removing the dependency on third-party ser-
vices) with only small changes in the code.

Originally the system was developed only on PHP,
but the Java counterpart was developed to prove that
anyone with the necessary knowledge can create their
own version with its own functions in a short amount
of time. The Java version functions exactly as the
PHP version (even with some small improvements over
the original system) and was developed using JSF and
Primefaces. As long as the user uses the ThingSpeak
API correctly, the possibilities for customization are
many.

4 Functioning

The project is divided into two parts (Figure 3): the em-
bedded Linux system for sensor data acquisition, and a
remote system for online monitoring.

The embedded system consists of:

• The microcontroller board (b) left side.

• The Raspberry Pi (b) right side.

• The sensors used (a), connected by a breadboard
and a set of wires.

Journal of Mechatronics Engineering, v. 1, n. 1, p. 2 - 10, Apr. 2018 5



Versatile IoT system for Cloud-based sensor monitoring

Figure 3: Project schematic

The online monitoring system (d) has a friendly user
interface to consult stored data with charts, alongside a
security system where the authorized users are stored in
a local database.

4.1 Acquisition System

The sensors are powered by the Raspberry Pi, and the
read pin of each sensor is connected to one of the analog
ports of the microcontroller board. Figure 4 displays the
system as it functions: microcontroller board (A), Rasp-
berry Pi (B), sensors — temperature and luminosity —
(C) and LEDs (D).

Figure 4: Fully assembled system on breadboard

The PIC reads the voltage values provided by the
sensors and converts them to a number between 0 and
1023 (10 bits), where 1023 represents the maximum
value that may be read. It is connected to the RPi via
USB cable for powering and burning, and via serial (TX
and RX) for data transfer.

The PIC takes multiple readings of each sensor con-
nected during one minute, and calculates an average
value for each sensor to remove noise and stabilize the
readings. After each reading, it uses the serial connec-
tion established previously to send the data of each sen-
sor separated by a special character determined on the
code.

Upon receiving all readings of that minute, the RPi
uses functions from the curl library to send them to a
channel on ThingSpeak with a POST request. If the

data is sent successfully the green LED is turned on. If
there is a failure, the red LED is turned on and the data
that wasn’t sent is stored locally in the RPi. The data
stored cannot be automatically sent once the connection
is restored, but it may be inserted on future requests and
manually sent to the channel. Figures 5 and 6 display
the flowcharts of both stages of the system.

Figure 5: Algorithm run on PIC

Figure 6: Algorithm run on RPi

Journal of Mechatronics Engineering, v. 1, n. 1, p. 2 - 10, Apr. 2018 6



Versatile IoT system for Cloud-based sensor monitoring

4.2 Monitoring System

The monitoring system developed in this project has the
following functions:

• Displaying the acquired data as charts.

• Controlling access to the data.

• Providing the users with functions for searching
through the data (not provided by ThingSpeak).

• Allowing the user to monitor the state of the sen-
sors with accuracy.

The data may be consulted by filters where the user
can state which dates and times he wants to view. The
system also provides a function for data aggregation,
that calculates an average of the data during certain pe-
riods of time.

Figures 7 through 10 show a basic search in the Java
monitoring system. Figure 7 displays the options of the
Temperature menu, which contains several different fil-
ters for the user. Each filter requires different fields to
search through the data.

Figure 7: Temperature menu on Java system

Figure 8 displays the screen from the “Hourly av-
erages” menu. It contains a date field to determine the
date used and two fields for temperature values. It also
contains a mode field, in which the user defines how to
use those two values. The available modes are:

• “Any values”, which returns the averages from all
the readings.

• “>= Value 1”, which returns averages from read-
ings where the temperature is greater or equal to
Value 1.

• “<= Value 1”, which returns averages from read-
ings where the temperature is smaller or equal to
Value 1.

• “Between both values” which returns all readings
with values ranging from Value 1 to Value 2.

The user also needs do define how many averages
will be shown in the chart. On other search modes, the
user must also define the field on the X axis of the chart
(date, or time) and if the results will be grouped or not.
They may be grouped by day or by month, with an av-
erage of the selected periods being calculated and dis-
played.

Figure 8: Basic date filter on Java system

Figure 9 displays the filter with all fields filled.
The “Date” fields use the Brazilian standard, which
is DD/MM/YYYY. Eight averages are to be displayed
in each chart with the averages being calculated from
readings with temperatures between 10 and 40 degrees
Celsius.

Figure 10 displays the generated chart. It contains
the amount of readings defined, as well as the other con-
figurations. Note that more than the specified amount
of readings may be available, in which case the system
will provide buttons to navigate through the readings in
order to show more information.

Other filters have similar fields which work in the
same manner, allowing the user to search based on
either date, time or the value of the readings. The sys-
tem also provides a monthly search in which the user
provides the year and the month and the system returns
the correct readings.

Journal of Mechatronics Engineering, v. 1, n. 1, p. 2 - 10, Apr. 2018 7



Versatile IoT system for Cloud-based sensor monitoring

Figure 9: Filled date filter on Java system

Figure 10: Chart from Java system

4.3 Installation

The acquisition system is fairly straightforward, once
assembled. The C codes are available on GitHub, one
for the microcontroller board and one for the Raspberry
Pi. The first step is to compile the board’s code into a
.hex file. Then it is necessary to use the SanUSB tool
(described in Jucá, Carvalho & Brito (2009)) to burn the
appropriate hex file into the board.

Once the board is configured, all that is left is to
compile the RPi’s code into an executable file and run
it.

It is necessary to configure a ThingSpeak channel
before using the monitoring system. Both versions of it
need to be installed in a properly prepared environment,
although the PHP version is easier to install than the
Java version.

Some things, however, are needed for both versions.
They include:

• MySQL database installed.

• A database named “sis_amd” (name may be
changed by the user).

• A username and a password for the system to ac-
cess the database (defined by the user on the code)

• A table named “usuarios” with the fields:

– id_usuario (int)

– nome (varchar)

– login (varchar)

– senha (varchar)

• Obs: All these configurations may also be changed
by a more experienced user.

Also, for the PHP system the user has to insert the
first user into the database in order to log into the system
and have the MySQLi extension installed. For the Java
system there is a class named CreateDB which will cre-
ate the tables in an empty database and insert an initial
user, that can be defined on the code.

Once the initial configuration is done, one needs
simply to place the PHP folder inside the server and ac-
cess it. The Java version, however, requires being built
first. The user may build it in the latest version of the
Eclipse5 IDE, as long as it is configured for Java EE.
Then, he can run it from Eclipse itself or build a WAR
file to post in a server.

5 Results

While ThingSpeak provides charts that cannot be ef-
fectively browsed by the user (Figure 11), the moni-
toring system developed in this project allows the user
to search through all of the data stored. It enables the
user to perform searches through the data based on da-
tes, times and values (Figure 12), and even calculate
averages for certain periods of time (Figures 13 to 16).

Figures 13 and 14 display temperature and irradi-
ance readings (respectively) collected during a sunny
day (January 21st), presenting temperatures ranging
from 25 to 33 degrees Celsius and irradiance values that
reached 992 W/m2 around noon.

Figures 15 and 16 display readings of the same sen-
sors during a cloudy day (January 23rd). The highest
temperature is two degrees lower than the highest tem-
perature from the previous chart, but the difference
between the irradiance values is greater. Irradiance va-
lues on the 23rd remained low during all day, reaching
a maximum of 587 W/m2 near noon.

Journal of Mechatronics Engineering, v. 1, n. 1, p. 2 - 10, Apr. 2018 8



Versatile IoT system for Cloud-based sensor monitoring

Figure 11: ThingSpeak chart

Figure 12: Filter screen

Figure 13: Chart with hourly averages for temperature on a sunny
day

Figure 14: Chart with hourly averages for irradiance on a sunny day

All the data displayed on the previous charts has

5https://www.eclipse.org/

Figure 15: Chart with hourly averages for temperature on a cloudy
day

Figure 16: Chart with hourly averages for irradiance on a cloudy day

been collected by the Laboratory of Alternative Ener-
gies (LEA) from the Federal University of Ceará
(UFC), using temperature and irradiance sensors.

Screen shots of both systems are available in a
shared folder on Dropbox Silva & Costa (2017a). A
video on youtube Silva & Costa (2017b) features the
functioning of the acquisition system, and all the source
code developed is available on GitHub Silva & Costa
(2017c).

6 Conclusion

This project differs from others in the same line of re-
search because of its purpose. This project intends to
provide a free, open-source, simple, versatile and reusa-
ble data acquisition and monitoring system, while other
projects are directly focused on simply collecting and
monitoring the data from their sensors efficiently. This
system may be adapted and customized according to the
user’s needs and is able to access a larger number of
sensors.

In that regard, the project was a success. The acqui-
sition system works as it should, accepting a large range
of sensors that can be replaced by the user in a short
amount of time and displaying the data collected in a

Journal of Mechatronics Engineering, v. 1, n. 1, p. 2 - 10, Apr. 2018 9



Versatile IoT system for Cloud-based sensor monitoring

concise manner. The monitoring system has a PHP ver-
sion and a Java version, both available on Portuguese
and English. It provides a number of functions unavail-
able on ThingSpeak which facilitate and give more ac-
curacy to the monitoring process. Thus, ThingSpeak is
better used as a storage platform, rather than a moni-
toring platform. Since the monitoring system acts upon
the API provided by ThingSpeak, it may be easily adap-
ted and/or replaced by the user, as proved by the deve-
lopment of alternate versions.

The project has good extension potential for use
with a variety of sensors, since many of them can be
read by the PIC and their analog data converted to di-
gital values with few additions to the code. The use of
Raspberry Pi enables the possibility of even more func-
tions being added to the system and divides responsibi-
lities with the microcontroller, making the code burned
into it much simpler.

And it is exactly that extension potential that brings
ideas for future projects. Examples would be a sys-
tem that uses the collected data for making decisions
(such as triggering alarms), or a system that automa-
tizes the process of adding/removing sensors from the
acquisition system by generating code, making adapta-
tions more dynamic.

References

ANDREOLA, A. T.; SENTER, M. J. D.; TODERO,
E. L.; CARDOSO, G. Low cost data acquisition
system for wind prospecting. In: 2016 12th IEEE
International Conference on Industry Applications
(INDUSCON). [S.l.: s.n.], 2016. p. 1–6.

CISCO. The Internet of Things. 2011. Disponível
em: <http://www.cisco.com/c/dam/en_us/about/ac79/
docs/innov/IoT_IBSG_0411FINAL.pdf>. Acesso em:
23 jul. 2017.

GALANTE, A. C.; GARCIA, R. F. Sistema de
aquisição de dados de sensores de baixo custo baseado
no arduíno. In: Congresso Brasileiro de Agricultura
de Precisão. [S.l.: s.n.], 2014. v. 6.

JUCÁ, S. C.; CARVALHO, P. C.; BRITO, F. Sanusb:
software educacional para o ensino da tecnologia
de microcontroladores. Ciências & Cognição,
v. 14, n. 3, 2009. ISSN 1806-5821. Disponível em:
<http://www.cienciasecognicao.org/revista/index.php/
cec/article/view/254>.

JUCÁ, S. C. S.; PEREIRA, R. I. S. Aplicações
Práticas de Microcontroladores utilizando Software
Livre. 1. ed. [S.l.]: Imprima, 2017.

KHERA, N.; SINGH, S.; SHARMA, A.; KUMAR,
S. Development of photovoltaic module tracking
and web based data acquisition system. In: 2016
2nd International Conference on Applied and
Theoretical Computing and Communication
Technology (iCATccT). [S.l.: s.n.], 2016. p. 100–103.

MICROCHIP. PIC18F2455/2550/4455/4550 Data
Sheet. 2006. Disponível em: <http://ww1.microchip.
com/downloads/en/devicedoc/39632c.pdf>. Acesso
em: 23 jul. 2017.

MORGAN, J. A Simple Explanation Of ’The
Internet Of Things’. 2014. Disponível em:
<https://goo.gl/Yg9cEY>. Acesso em: 23 jul. 2017.

MUTHA, V. R.; KUMAR, N.; PAREEK, P. Real time
standalone data acquisition system for environmental
data. In: 2016 IEEE 1st International Conference on
Power Electronics, Intelligent Control and Energy
Systems (ICPEICES). [S.l.: s.n.], 2016. p. 1–4.

QUEIROZ, T. A. F.; DIAS, D. L.; ARAÚJO,
P. H. M.; FIGUEIREDO, R. P.; JUCÁ, S. C. S.
Sistema embarcado linux para análise de sensores de
temperatura dht11 e lm35. ERIPI 2016, 2016.

SILVA, A. A. M.; COSTA, L. S. 2017. Disponível
em: <https://www.dropbox.com/sh/fnsnvhqgq1xhyrt/
AAAXItAk386cTAV8C628sga0a?dl=0>. Acesso em:
28 jul. 2017.

. 2017. Disponível em: <https://www.youtube.
com/watch?v=j68Pd2bpm3M>. Acesso em: 28 jul.
2017.

. 2017. Disponível em: <https://github.com/
Ayrtonms>. Acesso em: 28 jul. 2017.

SMAR. Sistemas de Supervisão e Aqui-
sição de Dados. 2017. Disponível em:
<http://www.smar.com/brasil/artigo-tecnico/
sistemas-de-supervisao-e-aquisicao-de-dados>.
Acesso em: 23 jul. 2017.

Journal of Mechatronics Engineering, v. 1, n. 1, p. 2 - 10, Apr. 2018 10

http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://www.cienciasecognicao.org/revista/index.php/cec/article/view/254
http://www.cienciasecognicao.org/revista/index.php/cec/article/view/254
http://ww1.microchip.com/downloads/en/devicedoc/39632c.pdf
http://ww1.microchip.com/downloads/en/devicedoc/39632c.pdf
https://goo.gl/Yg9cEY
https://www.dropbox.com/sh/fnsnvhqgq1xhyrt/AAAXItAk386cTAV8C628sga0a?dl=0
https://www.dropbox.com/sh/fnsnvhqgq1xhyrt/AAAXItAk386cTAV8C628sga0a?dl=0
https://www.youtube.com/watch?v=j68Pd2bpm3M
https://www.youtube.com/watch?v=j68Pd2bpm3M
https://github.com/Ayrtonms
https://github.com/Ayrtonms
http://www.smar.com/brasil/artigo-tecnico/sistemas-de-supervisao-e-aquisicao-de-dados
http://www.smar.com/brasil/artigo-tecnico/sistemas-de-supervisao-e-aquisicao-de-dados

	Introduction
	Related works
	Resources
	SanUSB board, Raspberry Pi and used sensors
	SanUSB tool
	Used libraries
	ThingSpeak and monitoring system

	Functioning
	Acquisition System
	Monitoring System
	Installation

	Results
	Conclusion

