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Abstract. To ensure the correct positioning of the end-effector of robot manipulators is one of the most
important objectives of the robotic systems control. Lack of reliability in track the reference trajectory, as
well as in the desired final positioning compromises the quality of the task to be performed, even causing
accidents. The purpose of this work was to propose an optimal controller with an inner loop based on the
dynamic model of the manipulator and a feedback loop based on the Linear Quadratic Regulator, in order
to ensure that the end effector is in the right place, at the right time. The controller was compared to the
conventional PID, presenting better performance, both in the transient response, eliminating overshoot,

and steady state, eliminating stationary error.
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1 Introduction

Robot manipulators are programmable machines ca-
pable of performing a wide variety of tasks, such
as:welding, pick up and put, parts assembling, package
and paint spraying. To accomplish the tasks, there are
a dependency of the motions of the end-effector or the
interaction forces between the end-effector and the en-
vironment where the robot is working (LAMMERTS]
1993). A planar manipulator is a type of manipula-
tor where all the links move in parallel planes to one
another.

Before the robot accomplish any work, it is neces-
sary to position the end-effector in the right place at the
right moment. To do this, it is necessary to determine
the motion of each link. As the motion is produced by
motors that drive the corresponding joint, it is neces-
sary to solve the tracking control problem, that is, to
determine the actuator torques and forces that make the
manipulator follow the desired trajectory as well as pos-
sible, in order to ensure that the robot realizes the task
with the desired performance.

Using the desired end-effector trajectory and the in-
verse dynamics model of the manipulator, it is possible
to calculate the torques necessaries to perform the task
(MOOLAM; [2013). However, although model equati-

ons are well known, only imprecise knowledge of the
parameters is available. This so-called parametric un-
certainty may be caused by an unknown load at the end-
effector, poorly known inertias, uncertain and slowly
time-varying friction parameters. Thus, to realize the
desired tasks with the necessary performance, a con-
troller with feedback loop is required (LAMMERTS)
1993).

The purpose of this work was to study a control sys-
tem with an inner feedforward loop based on the in-
verse dynamics of the manipulator and an outer linear
feedback loop based on the Linear Quadratic Optimal
Control. The controllers obtained was compared with
the traditional PID controllers. This work also evalua-
ted the effect of the change of the weights of the matrix
Q on the kinematic and dynamics variables of the ma-
nipulator.

Three hypotheses can be formulated about the pro-
posed controller: (1) This controller provide better trac-
king position than the conventional PID; (2) less effort
(torque) is required from the actuator to perform the de-
sired motion and (3) the tuning of the proposed control-
ler is easier than the conventional PID.

The importance of the study is justified by the fact
that it is necessary to find controls that provide robust-
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ness and optimized performance for robot manipula-
tors.

2 Related Works

Since many tasks performed by manipulator robots de-
pend on the location in the space of the end-effector,
considerable effort has been made to create position
controllers to ensure the correct positioning of the ma-
nipulated tool. In this section, a brief review about some
related works is shown.

Khairudin, Mohamed & Husain| (2011) applied the
Linear Quadratic Regulator to control the position of
the end-effector of a flexible link robot manipulator.
The results obtained with the controller utilized were
compared with the ones obtained utilizing a conventio-
nal PID controller. Both techniques were able to reach
the desired angular positions however the LQR control
exhibited a reduction of 32.39% in the settling time and
of 68.95% in the overshoot lower, compared to the PID.

Pan & Xin|(2013)) developed a nonlinear robust and
optimal controller in order to achieve the robust stabi-
lity and the performance optimality under load uncer-
tainty. The controller was tested through computational
simulation with a SCARA-type robot model. For each
test the manipulator load was changed, keeping the con-
troller design parameters. The results showed that the
proposed controller is able to drive the manipulator to
desired position precisely under large load variations,
and applicable to a wide range of nonlinear dynamic
systems with uncertainties.

A robust adaptive PID control was proposed by |Xu
& Qiao| (2013) in order to solve the problems related
to the nonlinearity and the coupling of the manipula-
tor. The proposed controller was able to compensate
the unknown bounded disturbances ensuring the global
asymptotic stability with respect to the position and ve-
locity and guarantee the robot to track the desired posi-
tion and velocity trajectories accurately with quite small
tracking errors in finite time. When compared with the
adaptive PD controllers, the robust adaptive PID con-
troller provided better control performance because the
incorporation of an integral action. One disadvantage
of this controller is the fact that the derivative gain must
be equal to the integral gain (K; = K;) constraining
the flexibility of the controller.

Baghli et al| (2014) presented the concept of
MIMO-PID controller: instead of using an independent
PID control for each joint (SISO-PID) of the robot, this
controller considers the reference position of each joint

and makes the coupling of position errors of each joint.
Applying this method, the position errors in the steady-
state was reduced, the overshoot was eliminated and the
torque applied by the actuator was diminished.

Costa et al.| (2018)) developed a computed-torque
control whose the feedback was composed of and ro-
bustified PID controller against uncertain parameters
and neglecting dynamics , aiming to reduce the .,
cost. Compared with the conventional PD, the propo-
sed controller presents lower settling time. The trac-
king error is lower too, but noisier. The controller is
less sensible to variations in the parameters of the ro-
bot (e.g. payload, inertia moment, friction) than the PD
controller. Despite the shortcomings, the proposed con-
trol made the actuators use less torque to perform the
same movement as the PD control, which results in a
reduction in energy consumption.

Other approaches include: Artificial intelligence ba-
sed position controller (HASAN, 2012; WAI et al.
2010), optimal feedback-linearization control (CHA-
TRAEIL; ZADAL2012), computed-torque based control-
ler (CHEN et al.l |2014; JAHED et al.| [2013)), adaptive
PID controller (DELAVARI et al.l 2012), robust con-
trol (FATEH; AZARGOSHASBI 2015; [PARK; HAN|
2011)) and optimal control (OLIVARES; STAFFETTI,
2015).

3 Linear Quadratic Optimal Control

The Linear Quadratic Regulator (LQR) was introduced
by |[Kalman| (1960) in order to provide a solution for a
classical problem in control theory: the design of a li-
near optimal feedback control capable of minimizing
the state tracking error of a system with a minimal con-
trol effort (KUMAR; JEROME| 2016). This problem
was first approached by Wiener and Hall in the 1940s
(WIENER| [1949; HALL, [1943), but it was not rigo-
rously formulated from a mathematical point of view.

Studying a plant represented by the following sys-
tem in state-space form

d

&L~ Az(t) + Bu(t) )
dt

where z(t) € R™ is the state vector and u(t) € R™ is

the input control function. The behavior of the model is

described by the solution of the Eq. (I), whose general
solution has the form (GRANT] 2007)):

x(t) = o(t, to)x(to) Jr/o o(t, T)B(T)u(r)dr (2)
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being ¢(t, 7), defined for all ¢, the solution of the free
system represented by Eq. (I)), and

ot t) =1 3)
The solution of Eq. (2) is referred to as
z(t) = ¢(t; z,10) “4)

The purpose of the LQR is to produce a control ac-
tion u(t) for a system with a given non-zero initial state
x(0) which back the system to the zero state = 0 in
an optimal manner, that is, «(¢) must to ensure

lim (t;2,t) = 0 5)

t—in
It is achieved by minimizing the quadratic perfor-
mance index (LEWIS; M.; ABDALLAH, 1993):

J= %/ (x7Qx + u” Ru)dt (6)
0

If 2(t) is known and considering the feedback prin-
ciple (LEWIS; M.; ABDALLAH, 1993)), the control
law is given as

u(t) = —Kux(t) (7)

where K = [K,, K,] is the feedback gain matrix.
The determination of K is achieved solving the fol-
lowing equation

K=R'BTP (8)

where P is a symmetric mxm solution matrix of he
Riccati equation

ATP+PA—PBR'BTP+Q=0 9)

Q@ is a symmetric positive semidefinite mxm matrix
(Q > 0) and R is a symmetric positive definite nxn
matrix (R > 0) and they the design parameters of the
controller.

4 Linear Quadratic Inverse-Dynamics Control

The dynamics of the manipulator is modeled as

M(q)i+V(g,q) +G(q) =T

where M (q) is the inertia matrix nxn and function
of the joint-position, V' (g, ¢) is the centripetal/Coriolis
nx1 vector and G(q) the gravity vector nx1 (LEWIS;

(10)

M.; ABDALLAH||1993). The torques necessary to pro-
duce the acceleration is given by the nx1 vector 7 (n is
the number of joints).

The dynamic equation can be written as

M(q)G+N(q,q) =7 Y

where

N(q,q) = V(g,4) +G(q) (12)

represents nonlinear terms.

If the kinematic characteristics of the desired mo-
tion are given (i.e. accelerations, velocities, positions),
and having the dynamic model of the robot, the requi-
red torque to produce the motion can be computed th-
rough solving the Eq. (I0). If the mathematical mo-
del of the robot dynamics was well known, the torque
could be computed off-line and used to implement a fe-
edforward controller (CRAIG,2012). This ideal propo-
sition is presented in Figure[T]

Gl
q'J;» Dynamic Model T Robot q
9—

Figure 1: Open loop position control for ideal model

Because some variables are very difficult to be de-
termined (e.g. friction, moment of inertia) and others
are neglected during modeling (e.g. backlash), an exact
dynamic model is impossible to be achieved. Thus,
tracking errors arise, and the model presented in Figure
[I] becomes inapplicable, being necessary the develop-
ment of an outer feedback loop in order to minimize (or
ideally, eliminate) the errors.

Taking the trajectory, velocity and acceleration er-
rors, respectively, as

e=4q—4qd (13)
€=q—{qd (14)
€=q—qa (15)
where the index d indicates the desired variable.
Solving Eq. (TI)) for ¢
j=M'r—-M'N (16)

Formulating the Inverse Dynamics Control Law as

T=DMdg;+N+u 17)
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where M and N are the estimated inertia and nonlinear
terms matrices, and u the feedback control function.

Replacing Eq. in Eq. and making M = M

and N = N, the acceleration error becomes

¢ =M1u (18)

The Linear Quadratic Inverse-Dynamics Control

(LQID) has an inner nonlinear feedforward loop and an
outer feedback control loop, as shown in the Figure |2|

Feedforward
Loop

Figure 2: Linear Quadratic Inverse-Dynamics Control. The function
u(t) must be chosen in order to stabilize Eq. (T4) and Eq. (T3) so that
Eq. (T3) goes to zero.

Writing the errors in state-space form (Eq. (1)), we
have:
dle|l _ |0 Ife n 0 "
dt |e| |0 0] |¢ M1

u=-Kr=—[Kp Ku] [Z]

19)

where

(20)

The feedback gain K was determined using the Li-
near Quadratic design presented in section [3] The ma-
trices A and B were obtained from Eq. @), and the
matrices () and R had their values attributed experimen-
tally.

The inertia matrix is time-variable so that, in order
to ensure constant feedback gain, it was considerate
as a constant value matrix, being determined with the
robot in the position with maximum moment of inertia:

0.2506 0.1224 0.0292
0.1224 0.0703 0.0195
0.0292 0.0195 0.0097

M =

5 Experimental Procedure

To realize the tests 3-link planar robot type UARM-II
(Figure 3)), from the Robotic Laboratory of the Univer-
sity of Sdo Paulo - Sdo Carlos/Brazil, was used.

(a) 3-link planar robot scheme.  (b) UARM-II used in the tests

Figure 3: Robot manipulator used in the tests.

Five tests were performed:in the first four tests, was
applied a Linear Quadratic Inverse-Dynamics Control
whose the gains Kp and Kv of the feedback loop
were determined using the Linear Quadratic design
described above. In each of these tests the values of the
@ and R matrices were:

Test 1:
_ 10.[3 03><3 _
@= [ogxg 0.011; k=01
2.1078 0.8004 0.1690
Kp=10I; Kv= {0.8004 0.9121 0.1827
0.1690 0.1827 0.4817
Test 2:
~ (1013 0343 _
~ 033 0.00113] R=0.113
[2.0737 0.8328 0.1675
Kp=10I; Kv= [0.8328 0.8233 0.2113
101675 0.2113  0.3624
Test 3: :
_ 1013 03x3 _
"~ |03x3  0.000113 k=01l
[2.0700 0.8367 0.1669
Kp=10I; Kv= |0.8367 0.8126 0.2159
10.1669 0.2159  0.3472
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Test 4:

_ 1015 0343 B

Q{og,xg 0.0000113} R=011
2.0697 0.8371 0.1668

Kp=10I; Kv= [0.8371 0.8115 0.2164

0.1668 0.2164 0.3456

A unique feedback PD control loop was used in the
last test. The controller gains were determined by trial
and error method and are presented below:

Test 5:
5 0 0

Kp=1|0 5 0 Kv=0.113
0 0 2

6 Results and Discussion

As discussed above, two types of controllers were used
in the tests: the proposed LQID and the PD feedback
(this being the most used in industrial robotics), in order
to compare the performance of both. Each subsection
deals with a variable of importance.

In relation to the LQID control only the graphs of
test 4 are presented here, since for this controller, the
variations between the results of the tests performed can
be easily understood by analyzing the tables that deal
with RMS errors.

6.1 Position

In all tests, the time required to reach steady state was
about four seconds. The Linear Quadratic Inverse-
Dynamics control (tests 1-4) allowed smaller RMS po-
sition errors when compared to the PD feedback control
(test 5). Analyzing the RMS error values presented in
Table [I] it is possible to verify that, by reducing the
weight related to the velocity error, in the Q matrix, the
position tracking error is decreased. The test 4 showed
the smallest tracking error.

Table 1: RMS position error of joints (x 10~3)

Joint Test1l Test2 Test3 Test4d Test5
Qn 2.2 2.2 2.0 1.5 14.3
Q2 1.5 1.2 1.1 1.2 6.9
q3 2.1 2.5 2.4 1.7 10.9

Figure {4 shows the position of each of the three
joints of the robot relative to the reference 6. It is pos-

sible to note that the positions of the joints in test 4 fol-
low very well the desired movement, whereas in test 5
there are reasonable tracking errors during the transient
response.

0.4

0.3r

Position
o
N

0.1+

Time
(a) Test4
0.4
0.3r
c
Ke]
2.2
o
o
0.1

Time

(b) Test 5

Figure 4: Joint positions (rad) x Time (s). 01, 62, 03 are the positions
of the joints 1, 2 and 3, respectively.

The performance of the position response is analy-
zed in the Tab. 2] and the tracking position errors are
presented in the Fig. [5] It is possible to notice that
the proposed controller improved the quality of the
transitory and steady-state response, compared to the
conventional PID controller: the stationary error and
the overshoot were eliminated. These results agree
with those achieved by Khairudin, Mohamed & Husain
(2011) and confirm the hypothesis 1.
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Table 2: Analyze of the angular position response.

Parameter PID LQIDC
Steady-state error (rad) 0.006 0
Overshoot (%) 4.34 0
Settling time (s) 4 4
0.04
0.02f .
2
_q1
7(‘2
0.02f —
0 1 2 3 4 5
Time
(a) Test4

Position Error

0 1 2 3 4 5
Time

(b) Test5

Figure 5: Position error (rad) x Time (s). q1, g2, g3 are the joints 1,
2 and 3, respectively.

6.2 Velocity

The LQID control allowed smaller velocity errors when
compared to the PD feedback control (Table[3). The re-
duction of velocity weights of the () matrix provided a
better performance until the test 3, from then on, redu-
cing the weights did not cause reduction of the tracking
errors, on the contrary, allowed them to increase, as can
be observed in the Table 3] The LQID controller des-
pite producing a better result after the reduction of ()

weights, still present increased noise during decelera-
tion. The PD controller with empirical gains presents
errors with low noise, but great amplitude (Fig. [6).

Table 3: RMS velocity error of joints (x 10~3)

Joint Test1l Test2 Test3 Test4 Test5
q1 17.7 10.6 7.0 8.8 42.7
q2 36.6 20.7 12.8 17.2 21.1
q3 15.4 12.1 9.7 11.5 23.8

0.3
—
0.25¢ W |
2
0.2t EE
.é, —_—Ww
80.15" ]
(]
>
0.1r 1 1
|
0.05¢ A n 1
0 { ‘ ‘ ‘ N\
0 1 2 3 4 5
Time
(a) Test4
0.3
0.251
0.2r
>
S
S 0.15
(]
>
0.1r
0.051
0
Time
(b) Test 5

Figure 6: Velocities (rad/s) x Time (s). w1, w2, w3 are the velocities
of the joints 1, 2 and 3, respectively.
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6.3 Torque

Computed-Torque

0.2

©

[N
T

3

Computed-Torque
o

S
o
-

-0.2

Time
(a) Feedforward Torque
Feedback Torque
0.2 T T
—,
—,
g 0.1r 73|
g M‘\ il
(o]
s ot 1k ’ Ll
S ol ‘Wiﬂg | ‘%4‘, %WW( ,
: T
Ko)
©
Q
(&)
L 0ar
-0.2 -
0 1 2 3 4 5
Time
(b) Feedback Torque
Total Torque
0.2 T T
—,
2
0.1

Total Torque
o

S
o
-

0.2 . . . .

Time
(c) Total Torque

Figure 7: Torque (N.m) x Time (s) - Test 4. 71, T2, T3 are the torques
of the joints 1, 2 and 3, respectively.

Total Torque

0.2

0.1f Tl

Total Torque
o

-0.2

Time

Figure 8: Torque (N.m) x Time(s) - Test 5. 71, T2, 73 are the torques
of the joints 1, 2 and 3, respectively.

The Linear Quadratic Inverse-Dynamics controller have
two source of torque: the computed coming from the fe-
edforward loop and the feedback that is based on errors.
The computed torque remains unchanged between one
test an another for the tests 1-4, it is because this control
is based on the dynamics of the robot and the desired
trajectory, that are the same in all the tests. However,
the feedback torque changes from a test to another due
to change in gains K'p and Kv.

According to Table[d] it is possible to verify that re-
ducing the velocities weights of the ) matrix the energy
consumption to perform the desired motion is reduced,
so that in test 4 there was the lower consumption. The
PD controller has higher RMS torque values than the
LQID one what confirm the hypothesis 2.

If the robotic dynamic model was well known, the
feedback torques in the LQID controller would be zero.
However, this is unattainable from the practical point of
view.

Table 4: RMS total torque of joints (x10~3)

Joint Test1l Test2 Test3 Test4 Test5S
q1 40.4 43.8 39.7 38.4 72.4
q2 36.1 25.9 21.9 24.2 34.9
q3 23.5 26.7 25.6 19.1 22.2

The hypothesis 3 is not confirmed: while the chal-
lenge in tuning the conventional PID controller is to se-
lect correct feedback gains, in the proposed controller
this challenge corresponds to select the weights of the
Q and R matrices.
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7 Conclusion

This work proposed the development of a controller
with two loops, where one is based on the inverse dy-
namics of the robot and another is based on the LQR.
The results proved that this controller has best perfor-
mance than the conventional feedback PID, with less
overshoot and stationary error, as well as low energy
consumption.

The disadvantages are presented in the form of se-
lecting the Q and R matrices as well as the need for
basic knowledge of robot parameters to determine the
mathematical model of its dynamics.

For future work, we indicate the study of ways to
select matrices Q and R mathematically, based on the
required performance, in order to replace the trial and
error method.
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