M=

Journal of Mechatronics Engineering

Ultrashort pulses propagation through different approaches of
the Split-Step Fourier method

JOSE STENIO DE NEGREIROS JUNIOR!, DANIEL DO NASCIMENTO E SA CAVALCANTE!,
JERMANA LOPES DE MORAES?, LUCAS RODRIGUES MARCELINO?|
FRANCISCO TADEU DE CARVALHO BELCHIOR MAGALHAES', RENATA RODRIGUES BARBOZA!,
MARCOS LUNCIEL ROCHA MENEZES DE CARVALHO!, GLENDO DE FREITAS GUIMARAES*

Photonics Laboratory, Federal Institute of Ceard (IFCE), Fortaleza, Brazil
2Graduate Program in Telecommunication Engineering, Federal Institute of Ceard (IFCE), and
Federal University of Ceard (UFC), Fortaleza, Brazil

<steniojuniorsb @gmail.com>, |<danielsacavalcante @ gmail.com>, <jermanalopes @ gmail.com>,
<lucasrmarc @gmail.com>, |<carvalho.tadeu @ gmail.com>, |<renatarodriguesbarboza @ gmail.com>,
<amarcoslunciel @ gmail.com>, |<glendodefreitas @ gmail.com>

DOI: 10.21439/jme.v1i3.20

Received: 28 Nov. 2018. Accepted: 10 Dec. 2018

Abstract. Simulating the propagation of optical pulses in a single mode optical fiber is of fundamental
importance for studying the several effects that may occur within such medium when it is under some
linear and nonlinear effects. In this work, we simulate it by implementing the nonlinear Schrédinger
equation using the Split-Step Fourier method in some of its approaches. Then, we compare their running
time, algorithm complexity and accuracy regarding energy conservation of the optical pulse. We note
that the method is simple to implement and presents good results of energy conservation, besides low
temporal cost. We observe a greater precision for the symmetrized approach, although its running time
can be up to 126% higher than the other approaches, depending on the parameters set. We conclude that
the time window must be adjusted for each length of propagation in the fiber, so that the error regarding
energy conservation during propagation can be reduced.

Keywords: Split-step Fourier Method. Ultrashort pulse propagation. Nonlinear Schrédinger Equation.

Optical fiber. Nonlinear effects. Photonics.

1 Introduction

In the twentieth century, after the discovery of the
first, second and third low loss and low dispersion win-
dows in optical fibers, achieving an attenuation coeffi-
cient of less than 0.2 dB/km at the wavelength of 1550
nm (RIBEIRO, [2003)), researchers initiated studies of
ultrashort pulse propagation in optical fiber under linear
dispersive effects and nonlinear effects (AGRAWAL,
2001).

The propagation of an optical pulse in a nonlinear
optical fiber is mathematically represented by the Non-
linear Schrodinger Equation (NLSE). It is fundamen-

tally important to do a numerical approximation, in or-
der to improve the understanding of nonlinear effects
in optical fibers, since the NLSE is a nonlinear partial
differential equation, for which analytical solutions are
possible only in a few cases (AGRAWAL, 2001). We
searched in literature for the most recent studies on this
topic, and the main results we have found are discussed
next.

A widely used method to solve the problem of pulse
propagation in non-dispersive and nonlinear media is
the Split-Step Fourier method (SSFM), which is based
on the Fast Fourier Transform (FFT) algorithm (KEI-
SER, 2000). The SSFM is one of the most effective fi-
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Ultrashort pulses propagation through different approaches of the Split-Step Fourier method

nite differences methods to solve the problem of NLSE,
usually faster than most of the other finite difference
methods, which is due to the fact that the implemen-
tation of the SSFM algorithm uses the Fourier trans-
form as a basis (KOMNINOS,2010). The choice of the
method for solving the NLSE depends on the problem
under analysis. The SSFM works efficiently when we
intend to simulate a long link, but it does not provide
satisfactory results for fiber Bragg gratings modeling,
for instance (WASHBURN] [2002).

The precision of the SSFM may vary depending on
the input parameters. There are various approaches for
step-size controlling. Some researchers [Balac & Mahé
(2015)) present a new method for estimating the local
error in the S-SSFM when solving the NLSE, based on
the step-doubling approach, but with less computatio-
nal cost. Similarly, other authors [Shao, Liang & Kumar
(2014b)) propose a scheme of adaptive step size com-
bining the local error method and minimum area mis-
match, which changes the step size depending on the
local error of the current step, thus improving accuracy.
Liu (2009) proposes an adaptive algorithm that adjusts
the step sizes for a better accuracy and decrease of com-
putational time.

Bayindir| (2015) proposes an approach called Com-
pressive Split-Step Fourier Method, using a number of
spectral components smaller than usual. After perfor-
ming the time integration and using the compressive
sampling algorithm, the signal is reconstructed with
better efficiency. In|Duo & Zhang| (2016), the authors
propose three different Fourier spectral methods, and
compare their results for solving the fractional NLSE.
The SSFSM (Split-Step Fourier Spectral Method) pre-
sents the most accurate results for studying the behavior
of the plane wave solutions. [Taylor| (2015) uses both
SSFM and Finite Difference method to analyze the So-
liton collision of a type of NLSE and compare their re-
sults, which show the SSFM is more stable, faster and
can solve the equation on a larger spatial interval using
a larger time step.

Although quite a lot of related work can be found
in literature, we noticed that, so far, none of them has
compared the running time of the SSFM in its various
approaches, and none of them has studied the influence
of the time window width regarding accuracy.

Therefore, in this paper, we analyze the implemen-
tation of the Split-Step Fourier method in some of its
variations applied to the problem of propagation of an
ultrashort optical pulse along a single mode fiber under
the linear effects of second order dispersion and nonli-

near effects of self-phase modulation (SPM). We com-
pare the results obtained by each approach and analyze
the running time, algorithm complexity and accuracy
regarding energy conservation of the optical pulse in
different variations of the method, and then we discuss
the different parameters of the method, which must be
adjusted for each scenario.

2 Theoretical Framework
2.1 Split-Step Fourier method

As the NLSE for the propagation of a pulse in optical
fiber is a nonlinear partial differential equation, it only
admits analytical solutions for a few and very specific
problems. Thus, a numerical approach is necessary for
a better understanding of nonlinear effects in optical fi-
bers. Among the various finite differences and pseudo-
spectral methods, we highlight the Split-Step Fourier
method, due to its speed and accuracy (KEISER|[2000).

Generally, both linear and nonlinear effects occur
simultaneously, so that we have to apply and analyze
the two operators simultaneously. However, the SSFM
operates with an approximated solution, assuming that
when the optical pulse is propagated through a tiny dis-
tance, the effects of linearity and nonlinearity may be
taken independently (KOMNINOS| 2010). Mathema-
tical terms of dispersion and nonlinearity are separated
and dissociated in NLSE, allowing the use of the SSFM
to solve it (MUSLU; ERBAY/ 2005).

In the SSFM, the fiber is divided into segments
along its length, called steps (h), and the electromag-
netic field is propagated in each segment considering
linear and nonlinear effects, separately, as illustrated in
Figure [} We solve the linear equations directly in the
frequency domain, whereas the nonlinear equations are
solved within the time domain.

-

Figure 1: Example of pulse propagation with the traditional Split-
Step Fourier Method.

From Figure |1} we notice that the propagation is
performed at an initial 2z distance to the next distance
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(z 4+ h) (GROSZL,|{1998). The following equation shows
the expression that determines such propagation.

A(z+ h,T) = exp(hD)exp(hN)A(z,T) (1)

where A(z,T') corresponds to the pulse propagation in
the previous step, and A(z + h,T) represents the fi-
eld after the step h. The terms D and N represent the
dispersive parameter and nonlinear parameter, respecti-
vely.

The use of the Fourier transform makes the nume-
rical calculation much faster, thus making the SSFM
stand out regarding running time in comparison with
other methods. The final equation of optical pulse pro-
pagation through the SSFM is represented by:

Az +h,T) =5 {exp(hD)F {exp(hN)A(z,T)}}

2

After verifying Eq. 2] we can divide the implemen-
tation of the SSFM into four steps, as follows.

e Step 1: We analyze the nonlinear effects together
with the pulse propagation function, since they are
both in the time domain;

e Step 2: We calculate the Fourier transform of the
output obtained in step 1, converting the pulse to
the frequency domain, for linear effects analysis;

e Step 3: We apply the linear effects on the results
of step 2, both in the frequency domain;

o Step 4: We calculate the inverse Fourier transform
of step 3, returning the pulse to the time domain,
and then returning to step 1.

2.2 Symmetrized split-step Fourier method

The accuracy of Split-Step Fourier method can be
improved by using a derivation of this method, cal-
led Symmetrized Split-Step Fourier Method (S-SSFM).
The concept of the S-SSFM is very similar to the SSFM,
differing only in the way as the /N and D operators are
applied along the fiber (KOMNINOS| |2010).

In this method, the pulse is propagated up to half
the step h considering the D operator, as shown in Fi-
gure 2(a)l Then, the output of the D operator is used
as input to the propagation along the entire step h with
the N operator. Finally, the pulse is propagated along
the other half the step h with the D operator, as shown

(2)

Figure 2: Schematic representations of S-SSFM.

in Figure 2(b)] Then this process is repeated along the
whole length of the fiber, as shown in figure
Despite its better accuracy, the computational cost
is higher since it is proportional to the number of FFTs
performed (SHAO; LIANG; KUMAR| 2014a).
The expression that determines the S-SSFM is given
by the equation [ below

2.3 Numerical error

As previously mentioned, the SSFM calculates an ap-
proximation of the result of the NLSE. Therefore, there
are factors that may influence the numerical error of the
method. The choice of each parameter, such as step-
size, temporal/spectral windows and other conditions
of the pulse must be carefully adjusted in order to re-
ach more accuracy. For instance, if we choose a wrong
value for the spectral/temporal windows, there will be
errors due to aliasing.

There are several papers that investigate the influ-
ence of the step-size on the energy conservation error
and methods to minimize such error (BALAC; MAHE,
2015;/ZHANG; LI; DONG, 2013} [LIN et al., 2012} BA-
LAC; FERNANDEZ, 2014} ZHANG; HAYEE, 2008)).
Howeyver, there is error inherent to the method itself due
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Az +h,T)=5"! {eacp (ZD) ke {eacp (/:M N(z’)dz’> ! {exp (;D) F{A (z,T)}} }} 3)

to the propagation of the D operator and the /N operator
separately, which does not happen in the real world.

3 Materials and Methods

The Split-Step Fourier method accepts some variati-
ons as for its implementation. The basis of the method
consists in separating the dispersive linear effects (ope-
rator D), which occur in the frequency domain, and the
nonlinear effects (operator V), which occur in the time
domain, applying one operator at a time in each step h.

Traditionally, we first apply the N operator, since
the pulse amplitude vector is initially in the time do-
main, and then, after applying the Fourier fast trans-
form (FFT), we apply the operator D, then returning to
the time domain through the application of the Inverse
Fourier fast transform (IFFT) as shown in Table[T] with
this variation code (/N — D) implemented in MatLab.

Table 1: Split-Step Fourier Method N-D variation, implemented in
MatLab.

fork=1:h:L
N = li*gama.*((abs(y))."2); %Nonlinear effects(NLE)
y = exp(h.*N).*y; %Application of NLE in the time domain

y = fft(y); %Transformation to the frequency domain
y = exp(h.*D).*y; %Application of linear effects in the frequency domain
y =ifft(y); %Transformation to the time domain

end

where h is the step size, L is the length of the fiber,
gama is the nonlinearity parameter () and y is the hy-
perbolic secant pulse.

Optionally, we can first apply the operator D and
then the operator IV, resulting in the variation D—N. In
this case, the amplitude vector of the pulse is converted
to the frequency domain using the FFT, then we apply
the operator D, and after that we convert the pulse to
the time domain through the application of the IFFT,
and finally we apply the operator NV, as shown in Table
2l

In order to reduce the error inherent to the method,
we can also apply the S-SSFM. As shown in Table[3] the
field is propagated only until half the step (h/2) with the
operator D, then the resulting pulse is propagated along
the entire step (h) with the operator N, and finally, the
resulting field is propagated along the other half of the
step (h/2) with the operator D.

Table 2: Split-Step Fourier Method D-N variation, implemented in
MatLab.

fork = 1:h:L
N = li*gama.*((abs(y))."2);
y = fft(y);
y = exp(h.*D).*y;
y = iffi(y);
y = exp(h.*N).*y;
end

Table 3: Split-Step Fourier Method symmetrized variation, imple-
mented in MatLab.

for k= 1:h:L
N = li*gama.*((abs(y))."2);
y = fft(y);
y = exp((/2).*D).*y;
y = iffi(y);
y = exp(h.*N).*y;
y = fi(y);
y = exp((/2).*D).*y;
y = iffi(y);
end

In this paper, we compare the three variations regar-
ding the error produced in the energy conservation and
the running time for different values of input parame-
ters. Then, we discuss the different parameters of the
method, which must be adjusted for each scenario.

In the simulations with the three variations (N — D,
D — N and Symmetrized), we vary the length propaga-
ted (L), the step size (L) and the coefficient of nonlinea-
rity (7). As for the length propagated, we set the values
of 1, 5 and 50 km. The step size (h) was varied accor-
ding to a fixed number of steps (10, 50, 100, 500 and
1000 steps). As for the nonlinearity coefficient, we set
the values of 0, 11073, 10103 and 10010—3 W—1/km.
Hence we have 15 scenarios for each value of nonline-
arity coefficient. In all scenarios we work with 8192
points (window 8 times greater than that traditionally
used in literature, 1024 points), initial pulse with time
width of 2 ps, time window 200 times greater than the
initial pulse (0,4 ns), group velocity dispersion coeffi-
cient of 32 = -210~27 ps?/km and initial power of 1 W.
Besides, we set a null loss coefficient (o = 0) since we
want to see the difference in energy conservation caused
only by the error regarding the method.
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We chose to represent the optical pulse with a great
number of points in order to have an accurate represen-
tation of it, especially when under the nonlinear effect
of self-phase modulation, which compresses the pulse,
thus causing some power peaks. We also determined
the size of the window in order to cover the whole width
of the pulse after dispersion. Since the window in this
method is cyclic (i.e., when the pulse exceeds an edge
of the window it automatically penetrates through the
other edge), there will be distortion of the pulse dis-
played if the window is not wide enough.

The simulations were performed on a computer with
the following configurations: Intel(R) Core(TM) i5-
2310 CPU @ 2.90 GHz, 2.9 GHz, RAM: 4 GB. Du-
ring the execution, we closed all user processes, leaving
only MatLab running for better precision as for running
time. Additionally, for comparison, the same tests were
performed on a laptop with the following configurati-
ons: Intel(R) Core(TM) 13-2330M CPU @ 2.20 GHz
(4 CPUs), ~2.2 GHz, RAM: 3 GB, 32-bit OS.

4 Results and Discussion

In this section, we present the energy conservation
error and running time results for each variation of the
method. As mentioned in the previous section, we have
15 scenarios where we vary the total length and the step
size for each of the 4 variations of the nonlinearity pa-
rameter. The results of these simulations are presented
in Tables [4{to[7} which will be discussed next.

In Table [5] we present the results for the 15 scena-
rios with the nonlinearity parameter set at zero, whereas
v =11073, 101072 and 10010~3 W~1/km are presen-
ted in Tables [4] [5] [ and [7] respectively. Although the
tables show the results obtained from the simulations
on a desktop computer, the results obtained when tes-
ted on a laptop kept the same proportions, with slight
differences in the results due to their difference of com-
putational power.

From Table[d] we can see that the difference between
the running time of the symmetrized approach and the
running time of the other approaches varies from 50%
in scenario 7 up to around 86% in scenario 4. In Table
[B]the smallest difference is 54% in scenario 11, and the
largest one is 126% in scenario 8. Similarly, in Table [6]
we have differences of 55% up to 101%, and in Table
it varies from 57% up to 115%. Thus, in the case where
the parameter ~ is zero, the computation time is smal-
ler, which shows that the nonlinear effects require some
extra computational effort that affects the running time.

Regarding the energy conservation error, we see similar
results in most scenarios for both N-D and Symmetrized
variations, although it is expected that the Symmetrized
approach is always better.

In Tables [4] [5] and [6] in scenarios where the propa-
gated distance is longer than 1 km, there is an error in
the energy conservation significantly greater than in the
previous scenarios, increasing from the order of 1011,
in the worst cases of 1 km, to values in the order of 10—%
to 1072, This is due to the longer propagated distance,
which causes a greater dispersion in the signal and thus
causes the pulse to exceed the width of the time win-
dow. Therefore, part of the energy is not considered in
the final pulse energy calculations.

In Table VII there is no such difference regarding
the distance propagated since the high nonlinearity of
= 10010~3 causes significant distortions even for short
distances, thus maintaining errors of the order of 10~4
to 10~2 for all input values.

By comparing the results from the four tables, we
also observe that the symmetrized approach does not
always present the best results regarding energy conser-
vation, as we can see in all scenarios of Table | and
in the first scenarios of the other tables. From this, we
believe that the presence of the nonlinearity parameter
and the propagated distance have direct influence on the
advantages of the symmetrized approach.

From all tables we realize that N-D and D-N vari-
ations have a very similar running time, always in the
same order of magnitude, which denotes there is no ad-
vantage between these variations. We can even state
that the D-N approach presents better results in most
scenarios. Thus, we can conclude that both variations
can be implemented once they present similar computa-
tional cost. On the other hand, the Symmetrized method
shows, as expected, a running time higher than the other
variations, which is due to its extra amount of calculati-
ons.

Additionally, Figures [3] 4] [5] and [6] show the shape
of the initial pulse (blue lines) and the final pulse (red
dashed lines) for different scenarios where we varied
the value of the nonlinearity coefficient () and the dis-
tance traveled by the pulse. We emphasize that, in all
cases, it is expected that the pulse energy is conserved
during their propagation, since we are not considering
loss ( = 0). Thus, the area of the final pulse must
always be the same as the initial pulse, which was pro-
ven by means of simulations.

In Figures and we do not consider nonli-
near effects (y = 0). Thus, we observe only group velo-

Journal of Mechatronics Engineering, v. 1, n. 3, p. 2 - 11, Dec. 2018 6



Ultrashort pulses propagation through different approaches of the Split-Step Fourier method

Table 4: Results for the different scenarios with v = 0.

Input parameters Energy conservation error Running time (s)
Scenario | L (km) | h (m) S N-D Symmetrized N-D D-N Symmetrized
1 1 100 10 -1.21E-13 -2.78E-13 5.39E-03 | 5.16E-03 8.73E-03
2 1 20 50 -6.59E-13 -1.34E-12 2.53E-02 | 2.46E-02 4.11E-02
3 1 10 100 | -1.34E-12 -2.55E-12 4.97E-02 | 4.79E-02 8.03E-02
4 1 2 500 | -5.99E-12 -1.12E-11 2.33E-01 | 3.29E-01 3.84E-01
5 1 1 1000 | -1.12E-11 -2.44E-11 5.39E-01 | 4.50E-01 7.84E-01
6 10 1000 10 1.10E-03 1.10E-03 5.13E-03 | 4.89E-03 8.97E-03
7 10 200 50 1.10E-03 1.10E-03 2.53E-02 | 2.45E-02 4.88E-02
8 10 100 100 1.10E-03 1.10E-03 6.23E-02 | 4.79E-02 8.05E-02
9 10 20 500 1.10E-03 1.10E-03 2.30E-01 | 2.31E-01 3.92E-01
10 10 10 1000 | 1.10E-03 1.10E-03 4.75E-01 | 5.50E-01 7.87E-01
11 50 5000 10 7.20E-03 7.20E-03 6.12E-03 | 5.86E-03 1.00E-02
12 50 1000 50 7.20E-03 7.20E-03 2.60E-02 | 2.54E-02 4.20E-02
13 50 500 100 | 7.20E-03 7.20E-03 4.87E-02 | 4.95E-02 8.13E-02
14 50 100 500 | 7.20E-03 7.20E-03 2.34E-01 | 3.09E-01 3.94E-01
15 50 50 1000 | 7.20E-03 7.20E-03 4.60E-01 | 4.56E-01 7.93E-01

Table 5: Results for the different scenarios with v = 1 x 1073W =1 /km.

Input parameters Energy conservation error Running time (s)
Scenario | L (km) | h (m) S N-D Symmetrized N-D D-N Symmetrized
1 1 100 10 | -1.21E-13 -2.43E-13 5.81E-03 | 6.45E-03 1.00E-02
2 1 20 50 | -6.42E-13 -1.23E-12 2.68E-02 | 2.62E-02 4.27E-02
3 1 10 100 | -1.27E-12 -2.36E-12 5.15E-02 | 7.07E-02 8.27E-02
4 1 2 500 | -5.93E-12 -1.12E-11 2.55E-01 | 2.51E-01 4.07E-01
5 1 1 1000 | -1.14E-11 -2.36E-11 5.01E-01 | 5.29E-01 9.06E-01
6 10 1000 10 4.80E-03 4.90E-03 5.51E-03 | 6.80E-03 1.01E-02
7 10 200 50 7.34E-04 4.43E-04 2.77E-02 | 2.81E-02 4.34E-02
8 10 100 100 | 5.97E-04 5.05E-04 1.05E-01 | 5.37E-02 8.35E-02
9 10 20 500 | 5.69E-04 5.57E-04 2.51E-01 | 2.59E-01 4.15E-01
10 10 10 1000 | 5.69E-04 5.63E-04 5.01E-01 | 5.67E-01 8.26E-01
11 50 5000 10 4.90E-03 5.40E-03 5.34E-03 | 6.67E-03 9.95E-03
12 50 1000 50 4.10E-03 8.30E-03 2.72E-02 | 2.70E-02 4.42E-02
13 50 500 100 | 7.80E-03 1.26E-02 5.40E-02 | 5.49E-02 9.61E-02
14 50 100 500 | 9.60E-03 1.04E-02 2.59E-01 | 2.54E-01 4.22E-01
15 50 50 1000 | 9.70E-03 1.01E-02 4.95E-01 | 5.07E-01 8.86E-01

city dispersion with the pulse losing altitude (maximum
amplitude) and being enlarged in the time domain. We
notice that for a distance of 10 km, the dispersion is
much more intense, since it is, in fact, proportional to
the distance propagated. The energy difference of the
two pulses was from the order of 107! and 1073, res-
pectively.

In Figures @(a)] and we consider nonlinear ef-
fects from the order of v = 1x 1073 W~1/km. Thus, the

nonlinear effect of SPM acts on the pulse modifying
its amplitude in high power points, which produces a
narrowing caused by the fact the SPM overcomes the
dispersion caused by the linear effect of GVD. We ob-
serve that for a distance of 10 km the dispersion is more
intense, with a smaller narrowing of the pulse, whose
maximum value falls from 1.9 Wat I kmto 1.2 W at 10
km. The difference between the total energy of the ini-
tial and final pulses in the two scenarios was also from
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Table 6: Results for the different scenarios with v = 10 x 1073 W1 /km.

Input parameters Energy conservation error Running time (s)
Scenario | L (km) | h (m) S N-D Symmetrized N-D D-N Symmetrized
1 1 100 10 | -1.39E-13 -2.60E-13 5.82E-03 | 5.76E-03 8.63E-03
2 1 20 50 | -6.42E-13 -1.16E-12 2.62E-02 | 3.28E-02 4.45E-02
3 1 10 100 | -1.23E-12 -2.41E-12 5.20E-02 | 5.24E-02 8.19E-02
4 1 2 500 | -6.02E-12 -1.08E-11 2.48E-01 | 2.61E-01 3.93E-01
5 1 1 1000 | -1.07E-11 -2.35E-11 4.86E-01 | 5.38E-01 7.96E-01
6 10 1000 10 2.14E-02 8.10E-03 6.01E-03 | 6.81E-03 9.20E-03
7 10 200 50 1.30E-03 6.44E-04 4.50E-02 | 2.69E-02 4.44E-02
8 10 100 100 | 5.20E-04 2.60E-03 5.37E-02 | 6.89E-02 8.64E-02
9 10 20 500 | 4.19E-05 1.24E-04 3.22E-01 | 2.62E-01 4.18E-01
10 10 10 1000 | 5.84E-05 8.06E-05 5.41E-01 | 5.13E-01 8.50E-01
11 50 5000 10 2.70E-03 1.58E-02 6.40E-03 | 7.15E-03 9.87E-03
12 50 1000 50 6.60E-03 3.98E-02 2.87E-02 | 2.76E-02 4.53E-02
13 50 500 100 | 3.60E-03 1.80E-03 6.64E-02 | 5.50E-02 8.31E-02
14 50 100 500 | 1.91E-02 1.50E-03 2.61E-01 | 2.65E-01 4.73E-01
15 50 50 1000 | 4.40E-03 7.38E-02 5.96E-01 | 5.44E-01 8.39E-01

Table 7: Results for the different scenarios with v = 100 x 1072 W1 /km.

Input parameters Energy conservation error Running time (s)
Scenario | L (km) | h (m) S N-D Symmetrized N-D D-N Symmetrized
1 1 100 10 | 4.80E-03 5.63E-04 6.32E-03 | 5.94E-03 8.35E-03
2 1 20 50 | 4.10E-03 1.07E-02 2.81E-02 | 2.90E-02 4.35E-02
3 1 10 100 | 7.50E-03 2.51E-02 5.38E-02 | 5.26E-02 8.76E-02
4 1 2 500 | 9.08E-05 5.10E-03 2.61E-01 | 3.38E-01 4.18E-01
5 1 1 1000 | 1.10E-07 1.20E-03 5.25E-01 | 5.34E-01 9.17E-01
6 10 1000 10 1.14E-02 1.03E-02 8.07E-03 | 7.09E-03 9.30E-03
7 10 200 50 | 5.80E-03 2.81E-02 3.02E-02 | 2.63E-02 4.61E-02
8 10 100 100 | 5.20E-02 7.05E-04 9.85E-02 | 5.34E-02 8.55E-02
9 10 20 500 | 3.60E-03 9.17E-04 2.63E-01 | 2.61E-01 4.47E-01
10 10 10 1000 | 1.61E-02 8.33E-04 5.11E-01 | 5.62E-01 8.76E-01
11 50 5000 10 | 6.50E-03 4.66E-02 6.92E-03 | 6.42E-03 1.14E-02
12 50 1000 50 1.62E-02 2.40E-03 3.14E-02 | 3.06E-02 4.63E-02
13 50 500 100 | 9.70E-03 1.20E-03 5.64E-02 | 5.60E-02 9.08E-02
14 50 100 500 | 4.18E-02 1.30E-02 2.68E-01 | 2.66E-01 4.31E-01
15 50 50 1000 | 8.50E-03 3.30E-03 6.01E-01 | 5.16E-01 8.74E-01

the order of 10~ and 103, respectively.

In figures 5(a) and 5(b)] we fix gamma at vy =
10x 1073 W~1/km. We realize that the SPM acts more
intensively on the pulse. For 1 km it generates three
peaks (one central and two symmetrical by the sides),
with the side peaks reaching maximum power of 1.3 W,
whereas for 10 km it presents a central peak and several
small peaks, with power lower than 0.1 W.

In Figures and we fix gamma at v =

100x 1073 W—1/km. We observe that the SPM creates
new peaks at 1 km and makes the pulse unintelligible at
50 km.

5 Conclusion

By comparing the three variations of the Split-Step
Fourier method implemented in this paper to simulate
the propagation of an ultrashort pulse under dispersive
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Figure 3: Initial pulse and final pulse for v = 0 W~ 1/km after a distance of (a) 1 km; (b) 10 km.
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Figure 4: Initial pulse and final pulse for v = 1 x 103 W ~1/km after a distance of (a) 1 km; (b) 10 km.
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Figure 5: Initial pulse and final pulse for v = 10 x 10~3 W —1/km after a distance of (a) 1 km; (b) 10 km.
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Figure 6: Initial pulse and final pulse for v = 100 X 10—3 W —1/km after a distance of (a) 1 km; (b) 10 km.

and nonlinear effects, we conclude that the N-D variati-
ons (first nonlinear effects and then the dispersive one),
D-N (first the dispersive effects and then the nonlinear
effects) and Symmetrized approaches are simple to im-
plement and computationally efficient.

Regarding the computational time, we observe that
the N-D and D-N variations take almost the same time,
with no consistent advantages of these variations over
the other. However, both N-D and D-N variations are
faster than the symmetrized approach, with differences
that can reach up to 126%, depending on the length pro-
pagated.

As to energy conservation, we realize that in all ca-
ses the energy is conserved as expected, since we do
not consider losses (« = 0). However, there is an error
in energy conservation precision generated computatio-
nally, which varied from 1073 to 10~2, depending on
the scenario investigated. This error increases as the
propagated distance increases, since the dispersive ef-
fects are proportional to the distance and make the pulse
tail exceed the time window in some cases. Nonlinear
effects also have a slight influence on this error, especi-
ally when the window is not large enough.

Although the literature states that the time window
width must be 10 to 20 times greater than the time
width of the initial pulse (KEISER| |2000), our tests
show that these proportions can generate errors in the
pulse energy conservation from the order of 1072, We
conclude that a time window 100 times greater than the
width of the initial pulse provides the best results for
energy conservation, with errors that remain in the or-
der of 1071 regardless of the value of v for a distance

of 1 km. For a distance from 10 km, we suggest wor-
king with a window 500 times greater than the initial
pulse.

In future works we will investigate the performance
of the different variations of the symmetrized approach
(D-N-D and N-D-N), refine the error calculation, and
also observe the behavior of the method under the in-
fluence of others nonlinear effects, and also do a deeper
study on the influence of the time window.
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