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Abstract. One of the advantages of using DC motors is the ease of controlling their position and speed by
manipulating the input voltage. To this, feedback PID-based controllers can be used. However, adjusting
these controllers can be challenging and require some reasonable effort from the controller designer.
This work proposes an algorithm based on the Fibonacci Search Method to determine the optimal gain
of a proportional controller applied to the position control of a DC motor. The project specifications
were minimum settling time with null overshoot. The results obtained showed that the proposed method
is valid for determining the Kp gain according to the plant and the conditions involved. The proposed
method was compared with other optimization techniques such as Golden Section, Quasi-Newton and
Grey Wolf Optimization, standing out for its simplicity of implementation, low number of iterations and
fast convergence.
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1 Introduction

Direct Current motors (DC motors) are electrical ma-
chines capable of convert direct current and voltage into
movement. The first DC motor was developed in 1832
by the British electrician and scientific lecturer William
Sturgeon (GEE; JAMES, 2004). From then on, this type
of engine started to be widely used, being present in
the most varied areas, such as robotics, medicine, in-
dustry, military, toys, and domestic devices. In 2016,
the global electric DC motors market size was valued at
USD 20.196 million and its rising: that is expected that
in 2025 this value will reach USD 35.6 billion (GVR,
2017).

Among the several advantages of using a DC motor,
we highlight the ease of controlling its speed and po-
sition, by manipulating the input voltage. To perform
these controls, the well-known PID-based controllers
(such as P, PD, PI or even PID) can be applied. Des-
pite this type of controllers are very well known and
largely applied, they have a challenge: to determine the

optimal gains that ensure its good performance and ef-
ficacy, according to the project requirements.

Several methods were proposed to tune the
PID-based controllers with optimal gains, such
as Ziegler-Nichols (ZIEGLER; NICHOLS, 1942),
Root Locus (EVANS, 1948), artificial intelligence
based (FLORES-MORAN; YANEZ-PAZMINO;
BARZOLA-MONTESES, 2018) and optimization
techniques (RAMYA; JADHAV; PAWAR, 2020).
Although several tuning methods exist, the Ziegler-
Nichols and trial-and-error are the more applied
methods because of their relative ease of application.
These methods take time and effort on the part of the
controller designer and may not be applicable to certain
plants, in addition to not always providing optimal
gains as expected.

In this work we apply the Fibonacci Search Method
(FSM) to determine the optimal gain of a feedback pro-
portional controller applied to the position control of a
DC motor. In this case, optimal gain means the bestKp

gain that makes the system respond to a step input as
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quickly as possible (shortest settling time) without any
overshoot, that is, the gain that ensures the system to be
critically damped.

Both the optimization technique and the proportio-
nal control were chosen due to their low computational
cost and simplicity of implementation, so that the use of
these methods can be used in any control unit, such as
microcontrollers, which allows this work be extended
to hardware-in-the-loop systems.

A hypothesis is formulated for this work: through
the use of FSM, the Kp gain that satisfies the pro-
ject conditions can be determined quickly and with low
computational cost.

This paper is organized as follows: Section 2 pre-
sents a revision about related works, Section 3 contains
the dynamics modeling of DC motor, a stability analysis
is performed in Section 4, the Fibonacci Search Method
and its application in this work are presented in Sec-
tion 5, an analytical determination of Kp is performed
in Section 6, the results obtained with the application
of FSM are presented in Section 7, the conclusion is
in Section 8 and the Section 9 presents ideas for future
works correlated.

2 Bibliographic Review

Several works related to tuning feedback PID-based
controllers applied to DC motor have been developed.
In this section, we will discuss some of the more recent
ones.

A tuning method based on the Fibonacci Search
Method was proposed by Horla e Sadalla (2020)
to determine the optimal gains of a Fractional-order
Proportional-Integral (FOPI) controller. With this
method, the researchers could determine more than one
controller parameter, focusing in to minimize a cost
function took as the integrated absolute tracking error.
The results obtained proved that the method is appli-
cable and has the advantage of not requiring the plant
model to determine the controller gains.

Ramya, Jadhav e Pawar (2020) used Particle Swarm
Optimization (PSO) to tuning a PID controller for con-
trol of speed of Permanent Magnet Brush Less DC mo-
tor. This type of motor has a large application area such
as aeronautics, medical, robots, chemical and industrial
automation. When compared to the Ziegler-Nichols and
Genetic Algorithm methods, the PID tunned by PSO
presented a better efficiency with faster settling time
and negligible overshoot.

A recently developed optimization method, the Sine

Cosine Algorithm (MIRJALILI, 2016), was used by
Thakur et al. (2020) to tuning a PID controller of a
DC servo-motor system. This tuning was performed
by minimizing the integral-square-error. Although the
method used manages to stabilize the motor in a ste-
ady state, a 20% overshoot exists for the step input,
which may be undesirable in some applications. In ad-
dition, the authors did not perform any stability analysis
or comparison with other optimization methods for tu-
ning.

Kouassi et al. (2019) resorted to Ant Colony Opti-
mization (ACO) to tuning PID controller for DC motor
speed control. With six iterations the ACO determined
the optimal gains that made the system present a null
overshoot and a settling time of 0.29 seconds, against
6.96% overshoot and 0.38 seconds of settling time with
the gains determined by the Ziegler-Nichols method.

Atom Search Optimization (ASO) and a variation of
it, Chaotic Atom Search Optimization (ChASO) were
used by Hekimoglu (2019) to tuning a fractional-order
proportional-integral-derivative (FOPID) controller, ap-
plied to speed control of DC motor. The optimal gains
were determined after eight iterations. Both ASO-
FOPID and ChASO-FOPID controller promoted null
overshoot and 0.06 and 0.04 seconds settling time, res-
pectively. The proposed approach was compared to dif-
ferent optimal tuning methods and controllers, and the
ChASO-FOPID presented the best results.

A comparison study between tuning PID control-
ler using fuzzy and Genetic Algorithm (GA) was per-
formed by Flores-Moran, Yanez-Pazmino e Barzola-
Monteses (2018). The controller was used to control
position of DC motor. Both methods resulted in a 5%
overshoot, but the PID controller tunned by fuzzy pre-
sented a fast action with a settling time of 0.4 s while the
controller tunned by GA presented a slow action with a
settling time of 0.78 s.

Achanta e Pamula (2017) compared the Particle
Swarm Optimization (PSO) and Jaya Optimization Al-
gorithm (JOA) for tunning the PID controller applied
to a DC motor speed control.With PSO the settling
time and overshoot were 0.40s and 0.0063% respecti-
vely while with JOA, the values obtained were 0.52 s
for settling time and 2.28% for overshoot which leads
to the conclusion that PSO is better than the JOA for
this application.

A Novel Fuzzy Single Neuron PID (NFSNPID)
controller was proposed by Ghany, Shamseldin e Ghany
(2017). To design this controller, ANN and fuzzy tech-
niques were used, being the design divided in two parts:
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the first part uses Genetic Algorithm to obtain optimal
parameters for SNPID (Single Neuron PID) controller
and the second part deals with the design of fuzzy logic
control that update the weights of SNPID control on-
line. This controller was applied to a DC motor speed
control and presented the best results when compared to
the SNPID and CFSNPID (Conventional Fuzzy Single
Neuron PID) control. With this approach the settling
time and overshoot obtained were 0.016 s and 0.0096%,
respectively.

Many of the works discussed deal with the design
of PID controllers. In this work a single proportional
controller is applied, due to its simplicity of implemen-
tation and the type of the controlled plant.

3 Dynamical Model of DC motor

In order to determine the transfer function of the DC
motor, a mathematical modeling of its dynamics is per-
formed here. This modeling is based on the schematic
depicted by the Figure 1.

𝑅𝑚𝐿𝑚
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Figure 1: DC motor schematic

Applying the Kirchhoff’s voltage law to the electri-
cal circuit, the Equation (1) is obtained.

Vm −RmIm − Lm
dIm
dt
− Eemf = 0 (1)

Vm is the voltage applied to the motor, Im is the cur-
rent, Rm is the winding resistance, Lm is the characte-
ristic inductance of the rotor and Eemf is the induced
counter-electromotive force, proportional to the angular
velocity of the rotor. Because Lm ≪ Rm, the induc-
tance can be neglected. Then, the current in the winding
can be expressed by Equation (2).

Im =
Vm −Kmθ̇

Rm
(2)

where Km is the counter-electromotive constant and θ̇
is the angular velocity of the rotor.

Applying the second Newton’s law to the mechani-
cal system the Equation (3) is obtained.

Jlθ̈l = Kgηgτm−KgηgJmθ̈m−Kgbmθ̇m− blθ̇l (3)

Jl and Jm are the load and rotor inertia, respecti-
vely, Kg is the gear ratio, ηg is the gear efficiency, τm
is the torque provided by the motor and bl and bm are
the load and rotor damping coefficient, respectively.

Using the transformations τm = ηmKtIm (being
ηm the motor efficiency and Kt the torque constant of
the motor), θm = Kgθl and beq = K2

g bm+bl, Equation
(3) can be rewritten as:

Jlθ̈l + ηgK
2
gJmθ̈l +Beq θ̇l = ηgηmKgKtIm (4)

Finally taking Jeq = Jl + ηgK
2
gτm, combining the

equations (4) and (2) and applying the Laplace trans-
form (all the initial conditions are null), the transfer
function that establishes the relationship between the
angular position of the load coupled to the axle (θl) and
the voltage applied to the motor (Vm) is given by:

θl(s)

Vm(s)
=

ηgηmKgKt

JeqRms2 + (BeqRm + ηgηmK2
gKtKm)s

(5)
Substituting the parameter values (these values are

based on the Quanser Rotary Servo Base Unit SRV02
and shown in the appendix), the transfer function beco-
mes:

θl(s)

Vm(s)
=

3673.07

s2 + 36.4s
(6)

4 Lyapunov Stability Analysis

The main objective of this work is to find the Kp gain
of the feedback control (Fig. 2) that satisfies the desired
conditions. For this, is necessary to perform a stability
analysis, in order to verify what are the possible values
that Kp can to assume without leading the system to
instability. With this analysis, the optimization cons-
trains are determined.

Taking θd(s) = 0, D(s) = 0 and N(s) = 0, the
transfer function relating the output θ(s) and the error
e(s) is given by Equation (7).

θ(s)

e(s)
=

3673.07Kp

s(s+ 36.4)
(7)
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Figure 2: Proportional feedback control

Being the position error the difference between the
desired and real positions (e(s) = θd(s)− θ(s)), Equa-
tion (7) can be rewritten as:

s2e(s) + 26.4se(s) + 3673.07Kpe(s) = 0 (8)

Applying the inverse Laplace transform to Equation
(8), the dynamics of the error is then expressed as:

ë+ 36.4ė+ 3673.07Kpe = 0 (9)

Expressing Equation (9) in state variables:

x1 = e

x2 = ė = ẋ1

ẋ2 = −3673.07Kpx1 − 36.4x2

(10)

Choosing a matrix P :[
p1 0
0 p2

]
p1, p2 > 0 (11)

Defining the Lyapunov candidate function as:

V (x) =
1

2
xTPx =

1

2
p1x

2
1 +

1

2
p2x

2
2 (12)

The time derivative of Equation (12) is:

V̇ (x) = p1x1ẋ1 + p2x2ẋ2

= p1x1x2 − 3673.07Kpp2x1x2 − 36.4p2x
2
2

(13)
Expressing Equation (13) in matrix form:

V̇ (x) = xT

[
0

p1−p23673.07Kp

2
p1−p23673.07Kp

2 −36.4p2

]
x

= −xTNx
(14)

Equation (14) will always be negative semidefinite
if −N be negative semidefinite. The matrix −N will
be negative semidefinite if all principal minors ofN are
positive or null, that is:

36.4p2 ≥ 0 (15)

−(p1 − p23673.07Kp)2

4
≥ 0 (16)

As p2 > 0, Equation (15) is aways satisfied.
Otherwise, Equation (16) can only satisfy the equality,
which results in

p1 = p23673.07Kp (17)

To satisfy Equation (17), the gain Kp must be posi-
tive, thus, de derivative of the Lyapunov candidate func-
tion becomes V̇ (x) = −36.4p2x

2
2 which is aways nega-

tive semidefinite. Then, to ensure the system stability, is
necessary to have Kp > 0, and this is the optimization
constrain.

5 Fibonacci Optimization Method and the
Control Tuning

Given an objective function f : Rn → R of the inde-
pendent variables xxx, the optimization problem is to find
a vector x∗x∗x∗1 subject to some constrain and that mini-
mizes (or maximizes) f . In this work, the purpose is
to minimize a function f , then, sometimes the words
optimization and minimization will be used indistinctly.

The Fibonacci Search Method (CHONG; ZAK,
2012; RAO, 2009) is a tool to solve one-dimensional
optimization problems with unimodal objective functi-
ons. Such a method works as follows: given an initial
closed interval, say [Li, Ls], it seeks to find a new clo-
sed interval [L′i, L

′
s] ⊂ [Li, Ls] that is as small as pos-

sible and that contains the minimizer x∗, with as few
iterations as possible. For this, f is evaluated at two
intermediate points of [Li, Ls], a and b, that are deter-
mined as:

1Vector quantities are in bold and scalar quantities are not.
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a = Li + ρ(Ls − Li)

b = Ls + (1− ρ)(Ls − Li)
(18)

Then, if f(a) < f(b) the initial interval becomes
[Li, b], otherwise if f(a) > f(b) the initial interval be-
comes [a, Ls]. After this evaluation and redefinition of
the search interval, ρ is updated and the process restarts.
This algorithm repeats until the maximum number of
iterations is reached. At each iteration k, ρk is updated
as:

ρk = 1− FN−k+1

FN−k+2
− ε (19)

where Fk are the elements of the Fibonacci sequence.
This sequence is defined as follows. First, let F−1 = 0
and F0 = 1 by convention. Then, for k ≥ 0:

Fk+1 = Fk + Fk−1 (20)

Some elements in the Fibonacci sequence are:

F1 F2 F3 F4 F5 F6 F7 F8

1 2 3 5 8 13 21 34

The ε in Equation (19) is due to an anomaly in the
last iteration of the Fibonacci Search Method, because:

ρN = 1− F1

F2
=

1

2
(21)

What makes the boundaries of the new interval coin-
cide, which is undesirable. Then, in the last iteration
ρN = 1

2 − ε, where ε is a small number (10−3 in this
work). In other iterations, ε = 0. A flowchart of the
Fibonacci Search Method used in this work can be seen
in Figure 3, the algorithm was developed in a way to
reduce computational cost. The maximum number of
iterations was fixed as N = 6 and the boundaries of the
initial interval are [0.001, 1].

The optimization problem of this work is presented
as:

minimize f(Kp) = αMp + βts (22)

subject to Kp > 0

where α and β are weights (unitary in this work), Mp

and ts are the overshoot and settling time, respectively,
determined by equations (23) and (24).

Mp = e
−ξπ√
1−ξ2 (23)

Enter with

Li, Ls, N

and 𝜖

𝜖 = 0

𝐼𝑠 𝑖 = 𝑁?

𝜖 = 0.001

YesNo

𝑈𝑝𝑑𝑎𝑡𝑒 𝜌

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑠 𝒂 𝑎𝑛𝑑 𝒃

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑠 𝒇(𝒂) 𝑎𝑛𝑑 𝒇(𝒃)

𝐿𝑖 = 𝑎
𝑎 = 𝑏
𝑏 = 𝐿𝑖 + (1 − 𝜌)(𝐿𝑠 − 𝐿𝑖)

𝐿𝑠 = 𝑏
𝑏 = 𝑎
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Figure 3: Fibonacci Search Method flowchart

ts =
4

ξωn
(24)

In this case, ξ and ωn are:

ωn =
√

3673.07Kp (25)

ξ =

√
3673.07Kp

201.82Kp
(26)

After obtained the new interval [L′i, L
′
s], the opti-

mum Kp gain is determined by the center of mass of
this new interval:

Kp =
1

mi +ms
(L′imi + L′sms) (27)

where mi = f−1(L′i) and ms = f−1(L′s).
The center of mass is used to determine the best Kp

gain in the new interval obtained with the Fibonacci
Search Method, this approach is better than using the
arithmetic mean over the interval.

The algorithm was developed in MATLAB®

R2017a and the executions were carried out on a com-
puter with Intel®Core™i7-5500 2.40 GHz processor,
8.00 GB of RAM, 2.00 GB dedicated video card, Win-
dows 10 Home Single Language 64 bits.
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6 Analytical Determination of Kp

The closed-loop transfer function of the system is given
by:

θ(s)

θd(s)
=

3673.07Kp

s2 + 36.4s+ 3673.07Kp
(28)

The second-order system transfer function in the
standard form is:

ω2
n

s2 + 2ξωns+ ω2
n

(29)

In this work, the Kp gain must ensure that both
overshoot and settling time will be the minimum as pos-
sible (α and β where chosen as unitary). To this, it is
necessary to have ξ = 1 which results in Kp = 0.0902.
Then, in this case, is expected that the optimization find
this value for Kp, proving its effectiveness.

7 Results and Discussions

The value of gain found through the Fibonacci Search
Method is Kp = 0.1025 which is 0.0123 greater than
the one determined by the analytical method (see sec-
tion 6). This gain was determined after 6 iterations,
which is obvious, since N = 6 (see Figure 3) and the
time spent in the execution was 0.45s.

Analyzing Figure 4, is possible to see a fast con-
vergence of the overshoot (Mp), while a small vari-
ation of the settling time (ts) is noticed. This cons-
tancy of the settling time is due to the nature of the
closed-loop system, then to promote considerable chan-
ges in ts, another type of controller must be used (e.g.
proportional-derivative).

The interval of possible optimal gains values also
was quickly reduced, as can be seen in the Figure 5.
The initial value was [0.001, 1] and the final one was
[0.096, 0.1437], being their span 0.999 and 0.047, res-
pectively. The final interval has a span that is 95% less
than the initial one.

The step response of the system can be analyzed
for the gains obtained through the Fibonacci Search
Method and the Analytical Method, looking at Figure
6. In both, the reference value is reached in the steady
state and there is no overshoot, however with the gain
determined through FSM, the system converges more
quickly. The steady state error equal zero for a step in-
put was expected since the system is type 1.

A comparison between the results obtained with
FSM and analytical methods is provided by Table 1.

Figure 4: Overshoot and Settling Time convergences along the itera-
tions.

Figure 5: Overshoot and Settling Time convergences along the itera-
tions.

Table 1: Comparison between the results obtained with Analytical
and Fibonacci Search methods

Fibonacci Analytical
Kp 0.1025 0.0902
Overshoot (%) 0.0196 0
Settling Time (s) 0.26 0.32
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Figure 6: Overshoot and Settling Time convergences along the itera-
tions.

The MATLAB® function rlocfind was used to deter-
mine the Kp gain using root locus. The value obtained
was Kp = 0.0902, the same obtained analytically. A
plot of the root locus can be seen in Figure 7.

Figure 7: Root locus of the system. The red dot depicts the point that
was used to determine Kp.

Although the three methods (analytical, root locus
and FSM) provide good values of Kp the Fibonacci Se-
arch Method has the advantage of to be fast. Further-
more, only the motor parameters and the values of α
and β must be informed to the FSM, while the analyti-

cal method requires the user to solve equations and the
root locus demands greater knowledge of control the-
ory.

The Fibonacci Search Method (FSM) was compa-
red to Golden Section (GS), Quasi-Newton (Quasi) and
Grey Wolf Optimizer (GWO) (MIRJALILI; MIRJA-
LILI; LEWIS, 2014) methods, to determination of Kp.
The results obtained with each method are presented in
Table 2. In order to make a fair comparison between
the mentioned optimization methods, the computer was
restarted and only MATLAB was running during the
execution of the algorithms.

Table 2: Comparison between the results obtained with different op-
timization methods

FSM GS Quasi GWO
Kp 0.102 0.096 0.098 0.100
Mp (%) 0.019 0 0 0
ts (s) 0.26 0.28 0.28 0.27
Exec. time* (s) 0.45 0.50 0.97 9.30
Iterations 6 6 6 51
Obj. function** 12 12 30 306

*Execution time.
**Number of times the objective function was calculated
during optimization.

The overshoot convergence for each method is pre-
sented in Figure 8. The settling time was not plotted
because its low variation due to the nature of the closed-
loop system.

The results obtained with the GS method are very
close to the ones obtained with FSM. This is due to
the fact that both algorithms are very similar. The Kp

gain obtained with GS is closer to the one calculated
by the analytical method, however the settling time and
the time took by the simulation are slightly larger than
the ones from FSM. In both methods, only 6 iterations
were needed to achieve the optimal gain and the ob-
jective function was analyzed only 12 times during the
execution of the algorithms.

Despite the quick convergence, the Quasi-Newton
method has a major limitation: it is sensible to the arbi-
trary initial value of Kp. If a bad choice of this initial
value is made, the algorithm does not converge and the
optimal gain is not found. When compared to FSM, the
Quasi algorithm took twice as long to be executed, in
addition the objective function was calculated 30 times
and the results obtained were not extremely better than
those obtained with FSM.
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Figure 8: Overshoot convergence for each optimization method tes-
ted

The meta-heuristic optimizer GWO also showed a
fast convergence. However it took much more time to
be executed, in addition to requiring much more iterati-
ons, which resulted in a large amount of calculation of
the objective function.

If an autotuning system is developed using an opti-
mization method, and the plant replaces the cost func-
tion, then for each time the objective function would
be calculated, the plant is submitted to a test entry (e.g.
step input) in order to have its response to stimulus eva-
luated. So, the number of times the objective function is
calculated is important in determine how optimization
method will be used to develop this autotuning system.
Comparing the four methods tested, we can affirm that
FSM and GM are good choices for this purpose (Fig.
9).

A further test was carried out, varying the values of
α and β in Equation (22). The results obtained with this
test are shown in Figure 10. As expected, if the reduc-
tion of overshoot is prioritized (i.e. the α value is incre-
ased over β) more damping is added to the system, whe-
reas, if the settling time is prioritized, the system may
become underdamped. Due to the optimization restric-
tion (Kp > 0), at no time did the system experience
instability.

A frequency response analysis was performed with
the control system tuned with the gain obtained from
the proposed method (Kp = 0.1025). The Figure 11
shows the Bode Diagram. The cutoff frequency is 1.59
Hz, the gain margin is infinite and the phase margin is

Figure 9: Number of times the objective function was calculated for
each optimization method

Figure 10: Step response for different values of α and β

Journal of Mechatronics Engineering, v. 4, n. 1, p. 12 - 21, Apr. 2021 19



Optimal tuning of a proportional controller for DC motor position control via Fibonacci Search Method

74.67° (which proves the stability of the system). With
this analysis is possible to conclude that the systems is
not sensible to high frequency noise.

Figure 11: Bode diagram for the system with Kp = 0.1025

A last test was performed with the system subject to
a step input reference, a sudden disturbance type unit
impulse and a sinusoidal noise with frequency of 200
Hz in the feedback branch. As the cutoff frequency of
the system is 1.59 Hz all the noise was filtered. The po-
sition differences caused by the disturbance were elimi-
nated, showing the of the control in tracking a reference
and eliminate the effects of non-permanent disturban-
ces. Both to follow the reference and to deal with distur-
bances, the system responded quickly, with a transient
response of less than 0.5 s and null overshoot. Figure
12 depicts the system step response under noise and dis-
turbance. The Equation (30) below describes the noise
signal.

δ(t) = 0.1sin(1256.6t) (30)

Considering the results obtained with this work, is
possible to affirm that the hypothesis proposed in Sec-
tion 1 is confirmed: with application of FSM, the Kp

gain obtained made the system present a response with
low settling time and negligible overshoot. The gain
determination took place in less than a second (0.45 s),
requiring only six iterations, which proves its low com-
putational cost. The limitations of the Fibonacci Se-

arch Methods are the need for determine the number
of iterations previously and the fact of it find a interval
that contains the optimizer point, and not the optimizer
point properly. But its limitations are compensated by
the ease of implementation of the algorithm and the use
of center of mass to determine the optimizer.

Figure 12: Step response of the system under noise and disturbance.
The sinusoidal noise signal and the unit impulse disturbance were
evidenced in the figure

8 Conclusions

In this work we proposed the use of Fibonacci Search
Method (FSM) optimization algorithm to determine the
Kp of a proportional controller applied to the position
control of a DC motor. The project conditions were mi-
nimum settling time with null overshoot, that is, critical
damping.

The results proved that the proposed method is able
to determined the gain that satisfies the project require-
ments, with few iterations (in this work only six) in a
short time (0.45 s). It was due the of the optimal con-
traction factor of the FSM, which results in a fast con-
vergence.

9 Future Works

The uncertainties regarding the system parameters com-
promise the effectiveness of the optimization, since the
objective function is related to such parameters. Thus,
for future work, it is intended to develop a autotuning
system in which the plant itself will be used, instead of
its transfer function.
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Appendix

DC motor parameters (based on the Quanser Rotary
Servo Base Unit SRV02).

Table 3: DC motor parameters

Symbol Value Unit
Kt 0.00767 N.m
Km 0.00767 V/(deg/s)
Rm 2.6 Ω
Kg 70
Beq 4e(−3) N.m.s

Jm 3.87e(−7) kg.m2

Jeq 2e(−3) kg.m2

ηm 0.69
ηg 0.9

The quantities were defined in the text.
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